Now that start_monitor() (which calls start_inotify()) is called before
enum_devices() it no longer is necessary to call start_watching_device()
for devices which have been enumerated before start_inotify() gets
called (since there will not be any such devices anymore).
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
This fixes 2 races wrt probing v4l2 devices:
1. Before this change there was a window where a new udev device can get
added between the udev_enumerate_scan_devices() call in enum_devices() and
the udev_monitor_enable_receiving(this->umonitor); call. If this window was
hit then enum_devices() would not see the device and no udev-event for it
would be received either causing the device to not be seen.
Enabling udev event monitoring before calling udev_enumerate_scan_devices()
fixes this. Note that the code is already prepared to deal with getting
multiple add/change events for the same udev device, so hitting the new
race window where PipeWire may receive both an add- or change-event and
also sees + probes the device from enum_devices() is not a problem.
2. Before this change devices added by enum_devices() would not have
inotify monitoring activated right away because notify.fd = -1 at this
time turning start_watching_device() into a no-op.
These devices without inotify monitoring would then have their access
checked by process_device() calling check_access().
Then after all devices have been enumerated start_monitor() would call
start_inotify() which calls start_watching_device() for all devices added
by enum_devices(). This leaves a window where the ACL can change without
there being an inotify watch for it.
Calling start_monitor() before enum_devices() puts start_inotify()
notify before enum_devices() so that the add_device() calls done
by enum_devices() will now successfully call start_watching_device()
closing this window.
PipeWire is somewhat likely to not notify ACL changes because of this
because PipeWire is part of the systemd user default.target, where as
logind only starts applying the ACLs after GNOME has created the seat
for the GNOME session. So on first login we have PipeWire starting
and logind applying the ACLs at the same time, which allows for the ACL
change to hit the small race window where PipeWire is not monitoring
for ACL changes. Fixing this second race should hopefully resolve
issue #3960.
Closes: #3960
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Some complex camera pipelines, like the IPU6 can involve many /dev/video#
nodes (32 in the IPU6 case) and the current size of 128 chars is not enough
to hold all /dev/video# nodes in this cases causing SPA_KEY_DEVICE_DEVIDS
to get truncated, which in turn breaks the filtering of V4L2 devices which
are used by a libcamera driven camera in wireplumber.
Fix this by increasing the size of devices_str[] to 256.
This fixes wireplumber adding a bunch of non-function V4L2 video sources,
e.g. before this "wpctl status" outputs the following video sources:
Video
├─ Devices:
...
├─ Sources:
│ 90. ov2740
│ * 115. ipu6 (V4L2)
...
│ 135. ipu6 (V4L2)
│
├─ Filters:
After this fix the output is:
Video
├─ Devices:
...
├─ Sources:
│ * 92. ov2740
│
├─ Filters:
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
When the queue is full, before this patch we used to go into usleep in
the hope that the other thread will run and empty the queue and that we
can retry after the usleep.
This however does not always work because the other thread might be waiting
for the thread that does the invoke call and we lock forever.
Therefore we should always try to make progress in some way. Instead of
waiting, allocate an (or use the previously allocated) overflow queue and
write to that one. We can chain multiple overflow queues together as many
as we need (but we might want to bound that as well).
The loop.retry-timeout property is now deprecated.
See #4114
The control hooks of a loop are called before the loop starts polling
and after it has finished polling. Currently, this is used to implement
the locking in pw_thread_loop. This is used to guarantee that the thread
loop's lock is taken while the thread loop is dispatching, and that
the lock can be taken while the loop is polling, when it is running
no user-space code.
However, calling the thread control hooks of thread A when doing an
blocking invoke from thread B serves little purpose, and in fact
can cause issues: for example, issuing a blocking invoke on a
pw_thread_loop does not work unless the lock thereof is taken.
This behaviour, of calling the control hooks from other threads,
is also not documented, and goes contrary to what is currently
stated in the loop.h header file:
/** Executed right before waiting for events. It is typically used to
* release locks. */
...
/** Executed right after waiting for events. It is typically used to
* reacquire locks. */
At the moment the implementation allows any thread to queue invoke
items on any other thread without restrictions; calling the control
hooks only places extra restrictions on the usability of this mechanism
(in case of pw_thread_loop, having to take the loop's lock).
So do not call the control hooks when doing a blocking invoke.
While the spec allows for 1ppm changes, our rate matching logic applies
these changes quite often, which can be spammy on USB. I haven't seen
hosts mind this, but it seems like it might be a problem at some point.
Additionally, if we also have bind ctls enabled, every pitch update is
also a wakeup for ourselves (whether or not we're listening for the
pitch ctls, since the mixer fd does not distinguish between ctls, those
are filtered after we wake up).
The 10ppm threshold is empirically tested as being not "too noisy" (i.e.
when updates happen, I can see them scroll by with `amixer events`).
If necessary, we can make this configurable in the future.
The IO_Buffers is used in the data thread to check if the port should be
scheduled or not. Make sure it is only set after we set buffers on the
port and cleared before the buffers are cleared.
Make sure we sync the port->io with the data thread.
See #4094
Due to the how the kernel part of BlueZ computes the extended
advertising interval for a Broadcast Source, a sync_factor smaller
than 2 will result in an invalid interval value (too small).
They don't work on all HDMI output devices, and availability is
not detected so they're available also when they don't work.
Selecting the profiles on non-working devices results to
spa.alsa: plug:{SLAVE="a52:0,'hw:0,3'"}p: snd_pcm_start: Broken pipe
and noise output to speakers. Revert these profiles from stable branch
for now as the break things.
This reverts commit 916d2cdb28.
This reverts commit d6c17681da.
Make a new flag that is set when the process function is called because
of a recover from a graph xrun.
Use this flag in the freewheel driver to detect a recover and to avoid
scheduling a new timeout. We should schedule a new timeout only when the
process function was called after completion.
This fixes export in ardour some more when the initial driver timeout
didn't complete (when, for example, some nodes were still starting up).
Use dynamic pod builder so that we can also build complex formats.
Make sure we zero the format before we parse it or else we end up with
potentially uninitialized values.
When ENUM_FRAMESIZES or VIDIOC_ENUM_FRAMEINTERVALS return EINVAL for the
first index, make a dummy result and continue with that. This will
trigger an intersect withe filter so that we end up with something valid
instead of nothing.
Handle 0 framerates without crashing.
See #4063
ACP allows multiple %f in device strings (cf pa_alsa_open_by_template),
but we replace only one of them when emitting the nodes. The a52
profiles in default.conf use multiple %f and probably don't work.
Fix to replace also multiple %f when emitting ACP device nodes.
I believe the intent here is that if a `interval` is provided
but `value` is unset, then `value` should default to `period`
so the timer first fires after one `interval`.
Since `interval` is always a relative duration, `value` should
be interpreted as a relative duration, not an absolute one.
Can be used to group ports together. Mostly because they are all from
the same stream and split into multiple ports by audioconvert/adapter.
Also useful for the alsa sequence to group client ports together.
Also interesting when pw-filter would be able to handle streams in the
future to find out what ports belong to what streams.
This fixes the endianness of the parsed broadcast code. It also
fixes pontetial out-of-bouns write by using a bigger, temporary
bcode string, then, after checking it's length, copying it's content
to big_entry->broadcast_code.
It's not used anymore because it does work so well.
The problem is that while it transparently proxies param enums on
ports to peers, it fails to emit events when those peer
params change in a way that would make the enum result change as well.
This makes it quite hard to use this correctly.
6e581deb91 added an `spa_autoptr(DbusMessage) m`
for the new message sent out when a signal is received from modemmanager.
However this ended up shadowing the original `m` function arg,
so the code that wanted to interrogate the original arg with
`dbus_get_message_path` etc ended up interrogating this `NULL` value instead.
This triggered a NULL-check in `dbus_get_message_path` and caused
the process to abort.
Original downstream report: https://gitlab.com/postmarketOS/pmaports/-/issues/2886
Currently, the user sets the Broadcast Code via an array of integers
in the config file. However, the Bluetooth Core Specification indicates
that it should be set via a 16 byte string. This commit replaces the old
implementation with the one required by the spec.
Tested the commit with the example provided in the Core Spec:
Broadcast Code: Børne House
Result from btsnoop log:
< HCI Command: LE Create Broadcast Isochronous Group (0x08|0x0068) plen 31
...
Broadcast Code[16]: 000000006573756f4820656e72b8c342
The result matches the example given in the spec.
Add "encryption" parameter to bluez5.bcast_source.config entry in
the configuration file. This allows the user to control the use of
Broadcast encryption.
Advertise support for the videotransform metadata.
Make a new meta.videotransform.transform property to configure the
desired video transformation in the metadata.
This makes it possible for a session manager or other rules to set
a custom transformation on the source.
See #4034
When bound_ctl info cannot be read this array elem info
is set to NULL in 'fetch_bind_ctl'. So when we iterate
the bound_ctl array we always have to check this.
In ACP mode, we might be accessing front:0 as the PCM, and using that
string to generate the ctl device name does not make sense. In
PulseAudio, we used the card index to generate a hw:X string, and we
replicate that here.
Fixes: https://gitlab.freedesktop.org/pipewire/pipewire/-/issues/4028
Kernel-provided MTU does not work for USB controllers and the correct
packet size to send can be known currently only from RX. So we are
waiting for RX to get it.
The known problem is USB-specific, we shouldn't need the workaround for
other transport types.
Don't wait for POLLIN for non-USB controllers on connect, but ready
things on POLLOUT as usual.
For non-USB controllers, pick some sensible packet sizes to use
initially, before we switch to same size as for RX.