Change node.priority to priority.session to indicate that this
is the priority that the session manager uses to select the node.
Add another priority.master that the core uses to select a master
driver. Keep the driver nodes sorted by master priority.
Let jack always prefer to connect to the master driver nodes.
Add a jack device and activate it when we release the device (for JACK
presumably). We need to work around some issues, jack does not allow
us to connect yet when it asks to release the device so we need to
wait a little and then connect.
Implement the device reservation DBus API.
When we acquire the device name, set our device profile to 'On'. This
adds our sources and sinks to the graph.
When we lose the name, switch back to 'Off' and remove our nodes
again.
Move the session mamager stuff in a directory.
Fixes#191
Remove the monitor API, we can use the device API for it. Make sure
we support creating devices (like alsa) from another device (udev).
Use new object.id to store the object id in the object properties. Use
the port.id/node.id etc to make relations to other objects.
Remove the parent_id from the global event. Remove the parent
and owner from the global object.
Use properties instead to mark parents and owners of objects.
Properties are easier to control for client exported objects and
usually a simple parent/child is not enough. For example, a client
exported node has the client as a parent but also the factory that
created the node.
Implement per channel volume on channelmix. Extend control on stream to
take an array of values when possible.
Remove name argument from pw_node_new and pw_device_new. We can pass
this as a property instead.
Improve properties on nodes to more closely match what pulseaudio does.
Don't let the monitor do too much with the udev properties but let the
session manager set the description and icon-names.
Remove some change_mask flags for things that don't change in
introspect. Use the flags to mark changes in -cli and -monitor.
Add a new PortConfig parameter to configure ports of elements that
are marked with the SPA_NODE_FLAG_*_PORT_CONFIG. This is used to
configure the operation of the audioconver/audioadapter nodes and
how it should convert the internal format. We want to use the
Profile parameter only for cases where there is an enumeration of
values, like with device configuration.
Add unit tests for audioconvert and adapter to check if they handle
PortConfig correctly.
Make the media session use the PortConfig to dynamically configure
the device nodes.
Remove audio-dsp, it is not used anymore and can/should be implemented
with a simple audioconvert spa node now and some PortConfig.
Remove the node buffers reply again. We don't need it. Instead add a
new method to the client-node to upload an array of buffer datas.
This method is called after the client has allocated buffer mem. It
will update the buffers on the server side with the client allocated
memory.
Wait for the async reply of use_buffers when doing alloc_buffers so
that we can get the updated buffer mem before we continue.
Let the link follow the states of the ports.
Add some error code to the port error states.
Add PW_STREAM_FLAG_ALLOC_BUFFERS flag to make the client alloc buffer
memory.
Remove the CAN_USE_BUFFERS flag, it is redundant. We can know this
because of the IO params and buffer params.
Add flags to the port_use_buffer call. We also want this call to
replace port_alloc_buffer. Together with a new result event we can
ask the node to (a)synchronously fill up the buffer data for us. This
is part of a plan to let remote nodes provide buffer data.
Run the a2dp sink and sources with the adapter in the session manager
and export it to PipeWire. The idea is that the codecs should not
preferably not run inside the daemon.
Use a new rate_match io area to exhange rate matching info between
sink/source and resampler.
Compensate for the rate match delay when scheduling timeouts.
Let the resampler notify the source of how many samples it needs to
produce the desired quantum. Make sure we keep an extra buffer in
the device to be able to make this possible.
Let the adapter directly call the slave node process function.
Define a set of standard factory names and document what they
contain. This makes it possible to change the implementation by
mapping the factory-name to a different shared library.
Pass a factory_name in the object_info of monitor and device.
Restructure the factory name to mean something functionaly. With
the factory to library mapping this then means that the implementation
of certain factories can be configured in the config file.
Remove override for resources, it can't work in general.
Rename method to add_object_listener to add a listener for
events/methods from the remote object.
Rename some methods to _call to call the interface and _notify
to notify the listeners.
Remove unused client event to be notified of resource
implementations.
The interface struct has the type,version and methods of the
interface.
Make spa interfaces extend from spa_interface and make a
separate structure for the methods.
Pass a generic void* as the first argument of methods, like
we don in PipeWire.
Bundle the methods + implementation in a versioned inteface
and use that to invoke methods. This way we can do version
checks on the methods.
Make resource and proxy interfaces that we can can call. We
can then make the core interfaces independent on proxy/resource and
hide them in the lower layers.
Add add_listener method to methods of core interfaces, just
like SPA.