This flags means that the fd can be mmaped without special handling. It
is the equivalent of the SPA_DATA_FLAG_MAPPABLE. Refuse to map memory
that is not mappable.
Make sure we make all allocated MemFd memory MAPPABLE by default. We can
then remove the stream and filter special handling for MemFd types and
just check the more generic MAPPABLE flag.
Make one exception when a client uploads MemFd buffer memory. We must
manually set the MAPPABLE flag for MemFd to make things backwards
compatible.
Remove some includes of private.h
Add some methods to get the mempool of client and context so that we can
remove direct access.
Move some things around.
Use methods to get pw_loop variables.
See #3243
Mark some structures, arrays static/const at various places.
In some cases this prevents unnecessary initialization
when a function is entered.
All in all, the text segments across all shared
libraries are reduced by about 2 KiB. However,
the total size increases by about 2 KiB as well.
This also brings the advantage that all tools, examples, modules, components
can also be compiled standalone out-of-tree using libpipewire from the system
Just like the real free() we should just ignore a NULL pointer, makes the
caller code easier for those instances where properties are optional.
Patch generated with concinelle with a few manual fixes.
SPA_MEMBER is misleading, all we're doing here is pointer+offset and a
type-casting the result. Rename to SPA_PTROFF which is more expressive (and
has the same number of characters so we don't need to re-indent).
This is more in line with wayland and it allows us to create new
interfaces in modules without having to add anything to the type
enum. It also removes some lookups to map type_id to readable
name in debug.
The proxy API is the one that we would like to expose for applications
and the other API is used internally when implementing modules or
factories.
The current pw_core object is really a context for all objects so
name it that way. It also makes it possible to rename pw_core_proxy
to pw_proxy later.
For flatpaks we need to be able to support older v0 protocol clients.
To handle this we have:
- the connection detects an old client when it receives the first
message. It can do this by checking the sequence number, on old
versions it contains the message size and is never 0, on new
clients the sequence number is 0.
- We add a new signal at the start of the connection with the detected
version number. This installs the right version of the core proxy.
We also move the binding of the client until the hello message is
received. This way we can have a new client connect (portal),
hand over the connection to an old client, which then removes the
client binding again in the hello request with a v0 version.
There are some changes to the passing of fds in v0 vs v3 which need
to investigated some more.
- bump version of our interfaces to 3. This makes it possible to
have v0 and v3 protocol marshal functions.
- Add version number in the proxy. This is mostly automatically done
internally based on the version numbers the library is compiled
with. Where the version number was in the API before, it is now
actually used to look up the right protocol marshal functions. For
Proxies there is usually just 1 version, the current one. It is the
server that will support different versions.
- Add v0 compat marshal functions to convert from and to v0 format.
This has some complications. v0 has a type map it keeps in sync
with the server. For this we have a static type map with mappings
to our own v3 types. Pods are mostly the same except for objects
that used to have arbitrary pods in v0 vs spa_pod_prop in v3. Also
convert between v0 spa_pod_prop and v3 spa_pod_choice.
Formats and commands are also slightly different so handle those
mappings as well.
We only have marshal functions for the server side (resource)
v0 functions.
- Add v0 compatible client-node again. It's a bit tricky to map, v0
client-node basically lets the server to the mixing and teeing
and just does the processing of the internal node.