mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-11-02 09:01:50 -05:00
work on separating port mixers
Make it possible to assign an arbitary node as the port mixer. Also remove dynamically added ports. Improve negotiation and allocation on the mixer ports Add some more SSE optimisations Move float mixer from the audio dsp to the port Remove pw_node_get_free_port() and do things more explicitly. Handle mixer ports in client-node
This commit is contained in:
parent
f55cb422cb
commit
ca898a00db
29 changed files with 2422 additions and 1504 deletions
269
spa/plugins/audioconvert/fmt-ops-sse.c
Normal file
269
spa/plugins/audioconvert/fmt-ops-sse.c
Normal file
|
|
@ -0,0 +1,269 @@
|
|||
/* Spa
|
||||
* Copyright (C) 2018 Wim Taymans <wim.taymans@gmail.com>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Library General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Library General Public
|
||||
* License along with this library; if not, write to the
|
||||
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
||||
* Boston, MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <spa/utils/defs.h>
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_1_sse(void *data, int n_dst, void *dst[n_dst], const void *src, int n_bytes)
|
||||
{
|
||||
const int16_t *s = src;
|
||||
float **d = (float **) dst;
|
||||
int n, n_samples;
|
||||
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
|
||||
|
||||
n_samples = n_bytes / (sizeof(int16_t) * n_dst);
|
||||
|
||||
for(n = 0; n_samples--; n++) {
|
||||
out = _mm_cvtsi32_ss(out, *s);
|
||||
out = _mm_mul_ss(out, factor);
|
||||
_mm_store_ss(&d[0][n], out);
|
||||
s += n_dst;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_2_sse(void *data, int n_dst, void *dst[n_dst], const void *src, int n_bytes)
|
||||
{
|
||||
const int16_t *s = src;
|
||||
float **d = (float **) dst;
|
||||
int n, n_samples, unrolled;
|
||||
__m128i in, t[2];
|
||||
__m128 out[2], factor = _mm_set1_ps(1.0f / S16_SCALE);
|
||||
|
||||
n_samples = n_bytes / (sizeof(int16_t) * n_dst);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in = _mm_loadu_si128((__m128i*)s);
|
||||
|
||||
t[0] = _mm_slli_epi32(in, 16);
|
||||
t[0] = _mm_srai_epi32(t[0], 16);
|
||||
t[1] = _mm_srai_epi32(in, 16);
|
||||
|
||||
out[0] = _mm_cvtepi32_ps(t[0]);
|
||||
out[0] = _mm_mul_ps(out[0], factor);
|
||||
out[1] = _mm_cvtepi32_ps(t[1]);
|
||||
out[1] = _mm_mul_ps(out[1], factor);
|
||||
|
||||
_mm_storeu_ps(&d[0][n], out[0]);
|
||||
_mm_storeu_ps(&d[1][n], out[1]);
|
||||
|
||||
s += 4*n_dst;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
out[0] = _mm_cvtsi32_ss(out[0], s[0]);
|
||||
out[0] = _mm_mul_ss(out[0], factor);
|
||||
out[1] = _mm_cvtsi32_ss(out[1], s[1]);
|
||||
out[1] = _mm_mul_ss(out[1], factor);
|
||||
_mm_store_ss(&d[0][n], out[0]);
|
||||
_mm_store_ss(&d[1][n], out[1]);
|
||||
s += n_dst;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
|
||||
{
|
||||
const int16_t *s = src[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i + 1 < n_dst; i += 2)
|
||||
conv_s16_to_f32d_2_sse(data, n_dst, &dst[i], &s[i], n_bytes);
|
||||
for(; i < n_dst; i++)
|
||||
conv_s16_to_f32d_1_sse(data, n_dst, &dst[i], &s[i], n_bytes);
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_1_sse(void *data, void *dst, int n_src, const void *src[n_src], int n_bytes)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
int32_t *d = dst;
|
||||
int n, n_samples, unrolled;
|
||||
__m128 in[1];
|
||||
__m128i out[4];
|
||||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
n_samples = n_bytes / sizeof(float);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s[0][n]), int_max);
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
|
||||
out[0] = _mm_slli_epi32(_mm_cvttps_epi32(in[0]), 8);
|
||||
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
||||
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
||||
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
||||
|
||||
*(d + 0*n_src) = _mm_cvtsi128_si32(out[0]);
|
||||
*(d + 1*n_src) = _mm_cvtsi128_si32(out[1]);
|
||||
*(d + 2*n_src) = _mm_cvtsi128_si32(out[2]);
|
||||
*(d + 3*n_src) = _mm_cvtsi128_si32(out[3]);
|
||||
d += 4*n_src;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
in[0] = _mm_load_ss(&s[0][n]);
|
||||
in[0] = _mm_mul_ss(in[0], int_max);
|
||||
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
||||
*d = _mm_cvttss_si32(in[0]) << 8;
|
||||
d += n_src;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_2_sse(void *data, void *dst, int n_src, const void *src[n_src], int n_bytes)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
int32_t *d = dst;
|
||||
int n, n_samples, unrolled;
|
||||
__m128 in[2];
|
||||
__m128i out[2], t[2];
|
||||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
n_samples = n_bytes / sizeof(float);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s[0][n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s[1][n]), int_max);
|
||||
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
in[1] = _mm_min_ps(int_max, _mm_max_ps(in[1], int_min));
|
||||
|
||||
out[0] = _mm_slli_epi32(_mm_cvttps_epi32(in[0]), 8);
|
||||
out[1] = _mm_slli_epi32(_mm_cvttps_epi32(in[1]), 8);
|
||||
|
||||
t[0] = _mm_unpacklo_epi32(out[0], out[1]);
|
||||
t[1] = _mm_shuffle_epi32(t[0], _MM_SHUFFLE(0, 0, 2, 2));
|
||||
t[2] = _mm_unpackhi_epi32(out[0], out[1]);
|
||||
t[3] = _mm_shuffle_epi32(t[2], _MM_SHUFFLE(0, 0, 2, 2));
|
||||
|
||||
_mm_storel_epi64((__m128i*)(d + 0*n_src), t[0]);
|
||||
_mm_storel_epi64((__m128i*)(d + 1*n_src), t[1]);
|
||||
_mm_storel_epi64((__m128i*)(d + 2*n_src), t[2]);
|
||||
_mm_storel_epi64((__m128i*)(d + 3*n_src), t[3]);
|
||||
d += 4*n_src;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
in[0] = _mm_load_ss(&s[0][n]);
|
||||
in[1] = _mm_load_ss(&s[1][n]);
|
||||
|
||||
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
||||
|
||||
in[0] = _mm_mul_ps(in[0], int_max);
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
out[0] = _mm_slli_epi32(_mm_cvttps_epi32(in[0]), 8);
|
||||
_mm_storel_epi64((__m128i*)d, out[0]);
|
||||
d += n_src;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_4_sse(void *data, void *dst, int n_src, const void *src[n_src], int n_bytes)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
int32_t *d = dst;
|
||||
int n, n_samples, unrolled;
|
||||
__m128 in[4];
|
||||
__m128i out[4], t[4];
|
||||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
n_samples = n_bytes / sizeof(float);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s[0][n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s[1][n]), int_max);
|
||||
in[2] = _mm_mul_ps(_mm_loadu_ps(&s[2][n]), int_max);
|
||||
in[3] = _mm_mul_ps(_mm_loadu_ps(&s[3][n]), int_max);
|
||||
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
in[1] = _mm_min_ps(int_max, _mm_max_ps(in[1], int_min));
|
||||
in[2] = _mm_min_ps(int_max, _mm_max_ps(in[2], int_min));
|
||||
in[3] = _mm_min_ps(int_max, _mm_max_ps(in[3], int_min));
|
||||
|
||||
out[0] = _mm_slli_epi32(_mm_cvttps_epi32(in[0]), 8);
|
||||
out[1] = _mm_slli_epi32(_mm_cvttps_epi32(in[1]), 8);
|
||||
out[2] = _mm_slli_epi32(_mm_cvttps_epi32(in[2]), 8);
|
||||
out[3] = _mm_slli_epi32(_mm_cvttps_epi32(in[3]), 8);
|
||||
|
||||
/* transpose */
|
||||
t[0] = _mm_unpacklo_epi32(out[0], out[1]);
|
||||
t[1] = _mm_unpacklo_epi32(out[2], out[3]);
|
||||
t[2] = _mm_unpackhi_epi32(out[0], out[1]);
|
||||
t[3] = _mm_unpackhi_epi32(out[2], out[3]);
|
||||
out[0] = _mm_unpacklo_epi64(t[0], t[1]);
|
||||
out[1] = _mm_unpackhi_epi64(t[0], t[1]);
|
||||
out[2] = _mm_unpacklo_epi64(t[2], t[3]);
|
||||
out[3] = _mm_unpackhi_epi64(t[2], t[3]);
|
||||
|
||||
_mm_storeu_si128((__m128i*)(d + 0), out[0]);
|
||||
_mm_storeu_si128((__m128i*)(d + 4), out[1]);
|
||||
_mm_storeu_si128((__m128i*)(d + 8), out[2]);
|
||||
_mm_storeu_si128((__m128i*)(d + 12), out[3]);
|
||||
|
||||
d += 4*n_src;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
in[0] = _mm_load_ss(&s[0][n]);
|
||||
in[1] = _mm_load_ss(&s[1][n]);
|
||||
in[2] = _mm_load_ss(&s[2][n]);
|
||||
in[3] = _mm_load_ss(&s[3][n]);
|
||||
|
||||
in[0] = _mm_unpacklo_ps(in[0], in[2]);
|
||||
in[1] = _mm_unpacklo_ps(in[1], in[3]);
|
||||
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
||||
|
||||
in[0] = _mm_mul_ps(in[0], int_max);
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
out[0] = _mm_slli_epi32(_mm_cvttps_epi32(in[0]), 8);
|
||||
_mm_storeu_si128((__m128i*)d, out[0]);
|
||||
d += n_src;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_bytes)
|
||||
{
|
||||
int32_t *d = dst[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i + 3 < n_src; i += 4)
|
||||
conv_f32d_to_s32_4_sse(data, &d[i], n_src, &src[i], n_bytes);
|
||||
for(; i + 1 < n_src; i += 2)
|
||||
conv_f32d_to_s32_2_sse(data, &d[i], n_src, &src[i], n_bytes);
|
||||
for(; i < n_src; i++)
|
||||
conv_f32d_to_s32_1_sse(data, &d[i], n_src, &src[i], n_bytes);
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue