filter-chain: add parametric EQ builtin plugin

add param_eq which can take an EQ file or a config list of biquad
filters. It is potentially more efficient to run this than a chain
of biquads.
This commit is contained in:
Wim Taymans 2024-10-10 18:58:32 +02:00
parent ddbe135a3b
commit ab20cc5f28
2 changed files with 307 additions and 1 deletions

View file

@ -233,6 +233,75 @@ PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME);
* } * }
*\endcode *\endcode
* *
* ### Parametric EQ
*
* The parametric EQ chains a number of biquads together. It is more efficient than
* specifying a number of chained biquads and it can also load configuration from a
* file.
*
*\code{.unparsed}
* filter.graph = {
* nodes = [
* {
* type = builtin
* name = ...
* label = param_eq
* config = {
* filename = "..."
* filters = [
* { type = ..., freq = ..., gain = ..., q = ... },
* { type = ..., freq = ..., gain = ..., q = ... },
* ....
* ]
* }
* ...
* }
* }
* ...
* }
*\endcode
*
* Either a `filename` or a `filters` array can be specified.
*
* The `filename` must point to a parametric equalizer configuration
* generated from the AutoEQ project or Squiglink. Both the projects allow
* equalizing headphones or an in-ear monitor to a target curve.
*
* A popular example of the above being EQ'ing to the Harman target curve
* or EQ'ing one headphone/IEM to another.
*
* For AutoEQ, see https://github.com/jaakkopasanen/AutoEq.
* For SquigLink, see https://squig.link/.
*
* Parametric equalizer configuration generated from AutoEQ or Squiglink looks
* like below.
*
* \code{.unparsed}
* Preamp: -6.8 dB
* Filter 1: ON PK Fc 21 Hz Gain 6.7 dB Q 1.100
* Filter 2: ON PK Fc 85 Hz Gain 6.9 dB Q 3.000
* Filter 3: ON PK Fc 110 Hz Gain -2.6 dB Q 2.700
* Filter 4: ON PK Fc 210 Hz Gain 5.9 dB Q 2.100
* Filter 5: ON PK Fc 710 Hz Gain -1.0 dB Q 0.600
* Filter 6: ON PK Fc 1600 Hz Gain 2.3 dB Q 2.700
* \endcode
*
* Fc, Gain and Q specify the frequency, gain and Q factor respectively.
* The fourth column can be one of PK, LSC or HSC specifying peaking, low
* shelf and high shelf filter respectively. More often than not only peaking
* filters are involved.
*
* The `filters` can contain an array of filter specification object with the following
* keys:
*
* `type` specifies the filter type, choose one from the available biquad labels.
* `freq` is the frequency passed to the biquad.
* `gain` is the gain passed to the biquad.
* `q` is the Q passed to the biquad.
*
* This makes it possible to also use the param eq without a file and with all the
* available biquads.
*
* ### Convolver * ### Convolver
* *
* The convolver can be used to apply an impulse response to a signal. It is usually used * The convolver can be used to apply an impulse response to a signal. It is usually used

View file

@ -633,7 +633,7 @@ static const struct fc_descriptor bq_raw_desc = {
/** convolve */ /** convolve */
struct convolver_impl { struct convolver_impl {
unsigned long rate; unsigned long rate;
float *port[64]; float *port[2];
struct convolver *conv; struct convolver *conv;
}; };
@ -1668,6 +1668,241 @@ static const struct fc_descriptor sine_desc = {
.cleanup = builtin_cleanup, .cleanup = builtin_cleanup,
}; };
#define PARAM_EQ_NUM_PORTS 2
static struct fc_port param_eq_ports[] = {
{ .index = 0,
.name = "Out",
.flags = FC_PORT_OUTPUT | FC_PORT_AUDIO,
},
{ .index = 1,
.name = "In",
.flags = FC_PORT_INPUT | FC_PORT_AUDIO,
},
};
#define PARAM_EQ_MAX 128
struct param_eq_impl {
unsigned long rate;
float *port[2];
uint32_t n_bq;
struct biquad bq[PARAM_EQ_MAX];
};
static int load_eq_bands(struct param_eq_impl *impl, const char *filename)
{
FILE *f = NULL;
char *line = NULL;
ssize_t nread;
size_t linelen, n = 0;
uint32_t freq;
char filter_type[4];
char filter[4];
char q[7], gain[7];
float vg, vq;
int res = 0;
if ((f = fopen(filename, "r")) == NULL) {
res = -errno;
pw_log_error("failed to open param_eq file '%s': %m", filename);
goto exit;
}
/*
* Read the Preamp gain line.
* Example: Preamp: -6.8 dB
*
* When a pre-amp gain is required, which is usually the case when
* applying EQ, we need to modify the first EQ band to apply a
* bq_highshelf filter at frequency 0 Hz with the provided negative
* gain.
*
* Pre-amp gain is always negative to offset the effect of possible
* clipping introduced by the amplification resulting from EQ.
*/
nread = getline(&line, &linelen, f);
if (nread != -1 && sscanf(line, "%*s %6s %*s", gain) == 1) {
if (spa_json_parse_float(gain, strlen(gain), &vg))
biquad_set(&impl->bq[impl->n_bq++], BQ_HIGHSHELF, 0.0f, 1.0f, vg);
}
/* Read the filter bands */
while ((nread = getline(&line, &linelen, f)) != -1) {
if (n == PARAM_EQ_MAX) {
res = -ENOSPC;
goto exit;
}
/*
* On field widths:
* - filter can be ON or OFF
* - filter type can be PK, LSC, HSC
* - freq can be at most 5 decimal digits
* - gain can be -xy.z
* - Q can be x.y00
*
* Use a field width of 6 for gain and Q to account for any
* possible zeros.
*/
if (sscanf(line, "%*s %*d: %3s %3s %*s %5d %*s %*s %6s %*s %*c %6s",
filter, filter_type, &freq, gain, q) == 5) {
if (strcmp(filter, "ON") == 0) {
int type;
if (spa_streq(filter_type, "PK"))
type = BQ_PEAKING;
else if (spa_streq(filter_type, "LSC"))
type = BQ_LOWSHELF;
else if (spa_streq(filter_type, "HSC"))
type = BQ_HIGHSHELF;
else
continue;
if (spa_json_parse_float(gain, strlen(gain), &vg) &&
spa_json_parse_float(q, strlen(q), &vq))
biquad_set(&impl->bq[impl->n_bq++], type, freq * 2.0f / impl->rate, vq, vg);
}
}
}
exit:
if (f)
fclose(f);
return res;
}
/*
* {
* filename = "...",
* filters = [
* { type=bq_peaking freq=21 gain=6.7 q=1.100 }
* { type=bq_peaking freq=85 gain=6.9 q=3.000 }
* { type=bq_peaking freq=110 gain=-2.6 q=2.700 }
* { type=bq_peaking freq=210 gain=5.9 q=2.100 }
* { type=bq_peaking freq=710 gain=-1.0 q=0.600 }
* { type=bq_peaking freq=1600 gain=2.3 q=2.700 }
* }
* ]
*/
static void *param_eq_instantiate(const struct fc_descriptor * Descriptor,
unsigned long SampleRate, int index, const char *config)
{
struct spa_json it[3];
const char *val;
char key[256], filename[PATH_MAX];
char type_str[17];
int len, res;
struct param_eq_impl *impl;
if (config == NULL) {
pw_log_error("param_eq: requires a config section");
errno = EINVAL;
return NULL;
}
if (spa_json_begin_object(&it[0], config, strlen(config)) <= 0) {
pw_log_error("param_eq: config must be an object");
return NULL;
}
impl = calloc(1, sizeof(*impl));
if (impl == NULL)
return NULL;
impl->rate = SampleRate;
while ((len = spa_json_object_next(&it[0], key, sizeof(key), &val)) > 0) {
if (spa_streq(key, "filename")) {
if (spa_json_parse_stringn(val, len, filename, sizeof(filename)) <= 0) {
pw_log_error("param_eq: filename requires a string");
goto error;
}
res = load_eq_bands(impl, filename);
if (res < 0) {
pw_log_error("failed to parse param_eq configuration from %s", filename);
goto error;
}
}
else if (spa_streq(key, "filters")) {
if (!spa_json_is_array(val, len)) {
pw_log_error("param_eq:filters require an array");
goto error;
}
spa_json_enter(&it[0], &it[1]);
while (spa_json_enter_object(&it[1], &it[2]) > 0) {
float freq = 0.0f, gain = 0.0f, q = 1.0f;
int type = BQ_NONE;
while ((len = spa_json_object_next(&it[2], key, sizeof(key), &val)) > 0) {
if (spa_streq(key, "type")) {
if (spa_json_parse_stringn(val, len, type_str, sizeof(type_str)) <= 0) {
pw_log_error("param_eq:type requires a string");
goto error;
}
type = bq_type_from_name(type_str);
}
else if (spa_streq(key, "freq")) {
if (spa_json_parse_float(val, len, &freq) <= 0) {
pw_log_error("param_eq:rate requires a number");
goto error;
}
}
else if (spa_streq(key, "q")) {
if (spa_json_parse_float(val, len, &q) <= 0) {
pw_log_error("param_eq:q requires a float");
goto error;
}
}
else if (spa_streq(key, "gain")) {
if (spa_json_parse_float(val, len, &gain) <= 0) {
pw_log_error("param_eq:gain requires a float");
goto error;
}
}
else {
pw_log_warn("param_eq: ignoring filter key: '%s'", key);
}
}
biquad_set(&impl->bq[impl->n_bq++], type, freq * 2 / impl->rate, q, gain);
}
} else {
pw_log_warn("delay: ignoring config key: '%s'", key);
}
}
pw_log_info("loaded %d biquads", impl->n_bq);
return impl;
error:
free(impl);
return NULL;
}
static void param_eq_connect_port(void * Instance, unsigned long Port,
float * DataLocation)
{
struct param_eq_impl *impl = Instance;
impl->port[Port] = DataLocation;
}
static void param_eq_run(void * Instance, unsigned long SampleCount)
{
struct param_eq_impl *impl = Instance;
float *in = impl->port[1];
float *out = impl->port[0];
for (uint32_t i = 0; i < impl->n_bq; i++) {
dsp_ops_biquad_run(dsp_ops, &impl->bq[i], out, in, SampleCount);
in = out;
}
}
static const struct fc_descriptor param_eq_desc = {
.name = "param_eq",
.n_ports = PARAM_EQ_NUM_PORTS,
.ports = param_eq_ports,
.instantiate = param_eq_instantiate,
.connect_port = param_eq_connect_port,
.run = param_eq_run,
.cleanup = free,
};
static const struct fc_descriptor * builtin_descriptor(unsigned long Index) static const struct fc_descriptor * builtin_descriptor(unsigned long Index)
{ {
switch(Index) { switch(Index) {
@ -1713,6 +1948,8 @@ static const struct fc_descriptor * builtin_descriptor(unsigned long Index)
return &mult_desc; return &mult_desc;
case 20: case 20:
return &sine_desc; return &sine_desc;
case 21:
return &param_eq_desc;
} }
return NULL; return NULL;
} }