channelmix: apply channel volumes correctly

This commit is contained in:
Wim Taymans 2019-08-14 14:56:16 +02:00
parent 449d98910b
commit 87ae7a8011
5 changed files with 270 additions and 253 deletions

View file

@ -32,14 +32,12 @@ void channelmix_copy_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
uint32_t i, n, unrolled;
float **d = (float **)dst;
const float **s = (const float **)src;
float *m = mix->matrix;
float v = mix->volume;
if (v <= VOLUME_MIN) {
if (mix->zero) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
else if (mix->norm) {
for (i = 0; i < n_dst; i++)
spa_memcpy(d[i], s[i], n_samples * sizeof(float));
}
@ -48,7 +46,7 @@ void channelmix_copy_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
float *di = d[i];
const float *si = s[i];
__m128 t[4];
const __m128 vol = _mm_set1_ps(m[i * n_src + i]);
const __m128 vol = _mm_set1_ps(mix->matrix[i][i]);
if (SPA_IS_ALIGNED(di, 16) &&
SPA_IS_ALIGNED(si, 16))
@ -79,8 +77,8 @@ channelmix_f32_2_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRI
uint32_t i, n, unrolled;
float **d = (float **)dst;
const float **s = (const float **)src;
float v = mix->volume;
const __m128 vol = _mm_set1_ps(v);
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
__m128 in;
const float *sFL = s[0], *sFR = s[1];
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
@ -95,11 +93,11 @@ channelmix_f32_2_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRI
else
unrolled = 0;
if (v <= VOLUME_MIN) {
if (mix->zero) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
else if (mix->norm) {
for(n = 0; n < unrolled; n += 4) {
in = _mm_load_ps(&sFL[n]);
_mm_store_ps(&dFL[n], in);
@ -119,18 +117,18 @@ channelmix_f32_2_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RESTRI
}
else {
for(n = 0; n < unrolled; n += 4) {
in = _mm_mul_ps(_mm_load_ps(&sFL[n]), vol);
in = _mm_mul_ps(_mm_load_ps(&sFL[n]), v0);
_mm_store_ps(&dFL[n], in);
_mm_store_ps(&dRL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sFR[n]), vol);
in = _mm_mul_ps(_mm_load_ps(&sFR[n]), v1);
_mm_store_ps(&dFR[n], in);
_mm_store_ps(&dRR[n], in);
}
for(; n < n_samples; n++) {
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), v0);
_mm_store_ss(&dFL[n], in);
_mm_store_ss(&dRL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), v1);
_mm_store_ss(&dFR[n], in);
_mm_store_ss(&dRR[n], in);
}
@ -145,12 +143,12 @@ channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
uint32_t n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
float v = mix->volume;
const float *m = mix->matrix;
const __m128 clev = _mm_set1_ps(m[2]);
const __m128 llev = _mm_set1_ps(m[3]);
const __m128 slev = _mm_set1_ps(m[4]);
const __m128 vol = _mm_set1_ps(v);
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
const __m128 clev = _mm_set1_ps(mix->matrix[2][0]);
const __m128 llev = _mm_set1_ps(mix->matrix[3][0]);
const __m128 slev0 = _mm_set1_ps(mix->matrix[4][0]);
const __m128 slev1 = _mm_set1_ps(mix->matrix[4][1]);
__m128 in, ctr;
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1];
@ -167,19 +165,19 @@ channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
else
unrolled = 0;
if (v <= VOLUME_MIN) {
if (mix->zero) {
memset(dFL, 0, n_samples * sizeof(float));
memset(dFR, 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
else if (mix->norm) {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev0);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
_mm_store_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev1);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
_mm_store_ps(&dFR[n], in);
@ -187,11 +185,11 @@ channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev0);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev1);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
_mm_store_ss(&dFR[n], in);
@ -201,29 +199,29 @@ channelmix_f32_5p1_2_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev0);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
in = _mm_mul_ps(in, vol);
in = _mm_mul_ps(in, v0);
_mm_store_ps(&dFL[n], in);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev1);
in = _mm_add_ps(in, ctr);
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
in = _mm_mul_ps(in, vol);
in = _mm_mul_ps(in, v1);
_mm_store_ps(&dFR[n], in);
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev0);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
in = _mm_mul_ss(in, vol);
in = _mm_mul_ss(in, v0);
_mm_store_ss(&dFL[n], in);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev1);
in = _mm_add_ss(in, ctr);
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
in = _mm_mul_ss(in, vol);
in = _mm_mul_ss(in, v1);
_mm_store_ss(&dFR[n], in);
}
}
@ -237,9 +235,12 @@ channelmix_f32_5p1_3p1_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RE
uint32_t i, n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
float v = mix->volume;
const __m128 slev = _mm_set1_ps(v * 0.5f);
const __m128 vol = _mm_set1_ps(v);
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
const __m128 slev0 = _mm_set1_ps(mix->matrix[0][4]);
const __m128 slev1 = _mm_set1_ps(mix->matrix[1][5]);
const __m128 v2 = _mm_set1_ps(mix->matrix[2][2]);
const __m128 v3 = _mm_set1_ps(mix->matrix[3][3]);
__m128 avg[2];
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1], *dFC = d[2], *dLFE = d[3];
@ -258,56 +259,48 @@ channelmix_f32_5p1_3p1_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_RE
else
unrolled = 0;
if (v <= VOLUME_MIN) {
if (mix->zero) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
for(n = 0; n < unrolled; n += 8) {
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
_mm_store_ps(&dFC[n], _mm_load_ps(&sFC[n]));
_mm_store_ps(&dFC[n+4], _mm_load_ps(&sFC[n+4]));
_mm_store_ps(&dLFE[n], _mm_load_ps(&sLFE[n]));
_mm_store_ps(&dLFE[n+4], _mm_load_ps(&sLFE[n+4]));
}
for(; n < n_samples; n++) {
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
_mm_store_ss(&dFC[n], _mm_load_ss(&sFC[n]));
_mm_store_ss(&dLFE[n], _mm_load_ss(&sLFE[n]));
}
}
else {
for(n = 0; n < unrolled; n += 8) {
avg[0] = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFL[n+4]), _mm_load_ps(&sSL[n+4]));
_mm_store_ps(&dFL[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFL[n+4], _mm_mul_ps(avg[1], slev));
avg[0] = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
avg[1] = _mm_add_ps(_mm_load_ps(&sFR[n+4]), _mm_load_ps(&sSR[n+4]));
_mm_store_ps(&dFR[n], _mm_mul_ps(avg[0], slev));
_mm_store_ps(&dFR[n+4], _mm_mul_ps(avg[1], slev));
_mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), vol));
_mm_store_ps(&dFC[n+4], _mm_mul_ps(_mm_load_ps(&sFC[n+4]), vol));
_mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), vol));
_mm_store_ps(&dLFE[n+4], _mm_mul_ps(_mm_load_ps(&sLFE[n+4]), vol));
avg[0] = _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&sFL[n]), v0),
_mm_mul_ps(_mm_load_ps(&sSL[n]), slev0));
avg[1] = _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&sFL[n+4]), v0),
_mm_mul_ps(_mm_load_ps(&sSL[n+4]), slev0));
_mm_store_ps(&dFL[n], avg[0]);
_mm_store_ps(&dFL[n+4], avg[1]);
avg[0] = _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&sFR[n]), v1),
_mm_mul_ps(_mm_load_ps(&sSR[n]), slev1));
avg[1] = _mm_add_ps(
_mm_mul_ps(_mm_load_ps(&sFR[n+4]), v1),
_mm_mul_ps(_mm_load_ps(&sSR[n+4]), slev1));
_mm_store_ps(&dFR[n], avg[0]);
_mm_store_ps(&dFR[n+4], avg[1]);
_mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), v2));
_mm_store_ps(&dFC[n+4], _mm_mul_ps(_mm_load_ps(&sFC[n+4]), v2));
_mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), v3));
_mm_store_ps(&dLFE[n+4], _mm_mul_ps(_mm_load_ps(&sLFE[n+4]), v3));
}
for(; n < n_samples; n++) {
avg[0] = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
_mm_store_ss(&dFL[n], _mm_mul_ss(avg[0], slev));
avg[0] = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
_mm_store_ss(&dFR[n], _mm_mul_ss(avg[0], slev));
_mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), vol));
_mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), vol));
avg[0] = _mm_add_ss(
_mm_mul_ss(_mm_load_ss(&sFL[n]), v0),
_mm_mul_ss(_mm_load_ss(&sSL[n]), slev0));
_mm_store_ss(&dFL[n], avg[0]);
avg[0] = _mm_add_ss(
_mm_mul_ss(_mm_load_ss(&sFR[n]), v1),
_mm_mul_ss(_mm_load_ss(&sSR[n]), slev1));
_mm_store_ss(&dFR[n], avg[0]);
_mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), v2));
_mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), v3));
}
}
}
@ -320,11 +313,10 @@ channelmix_f32_5p1_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
uint32_t i, n, unrolled;
float **d = (float **) dst;
const float **s = (const float **) src;
const float *m = mix->matrix;
float v = mix->volume;
const __m128 clev = _mm_set1_ps(m[2]);
const __m128 llev = _mm_set1_ps(m[3]);
const __m128 vol = _mm_set1_ps(v);
const __m128 clev = _mm_set1_ps(mix->matrix[2][2]);
const __m128 llev = _mm_set1_ps(mix->matrix[3][3]);
const __m128 v0 = _mm_set1_ps(mix->matrix[0][0]);
const __m128 v1 = _mm_set1_ps(mix->matrix[1][1]);
__m128 ctr;
const float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
@ -343,11 +335,11 @@ channelmix_f32_5p1_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
else
unrolled = 0;
if (v <= VOLUME_MIN) {
if (mix->zero) {
for (i = 0; i < n_dst; i++)
memset(d[i], 0, n_samples * sizeof(float));
}
else if (v == VOLUME_NORM) {
else if (mix->norm) {
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
@ -369,18 +361,18 @@ channelmix_f32_5p1_4_sse(struct channelmix *mix, uint32_t n_dst, void * SPA_REST
for(n = 0; n < unrolled; n += 4) {
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
_mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), vol));
_mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), vol));
_mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), vol));
_mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), vol));
_mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), v0));
_mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), v1));
_mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), v0));
_mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), v1));
}
for(; n < n_samples; n++) {
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), v0));
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), v1));
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), v0));
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), v1));
}
}
}