audioconvert: simplify 24 bits handling

Make a new uint42_t and int24_t type and use that to handle 24 bits
samples. This makes it easier because we can iterate and copy the
structs like other types.
This commit is contained in:
Wim Taymans 2022-07-01 12:24:35 +02:00
parent e395f62425
commit 817d5bd7a4
6 changed files with 204 additions and 247 deletions

View file

@ -132,7 +132,7 @@ void
conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const uint8_t *s = src;
const int24_t *s = src;
float *d0 = dst[0];
uint32_t n, unrolled;
__m128i in;
@ -149,21 +149,21 @@ conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
for(n = 0; n < unrolled; n += 4) {
in = _mm_setr_epi32(
*((uint32_t*)&s[0 * n_channels]),
*((uint32_t*)&s[3 * n_channels]),
*((uint32_t*)&s[6 * n_channels]),
*((uint32_t*)&s[9 * n_channels]));
*((uint32_t*)&s[1 * n_channels]),
*((uint32_t*)&s[2 * n_channels]),
*((uint32_t*)&s[3 * n_channels]));
in = _mm_slli_epi32(in, 8);
in = _mm_srai_epi32(in, 8);
out = _mm_cvtepi32_ps(in);
out = _mm_mul_ps(out, factor);
_mm_store_ps(&d0[n], out);
s += 12 * n_channels;
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
out = _mm_cvtsi32_ss(factor, read_s24(s));
out = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
out = _mm_mul_ss(out, factor);
_mm_store_ss(&d0[n], out);
s += 3 * n_channels;
s += n_channels;
}
}
@ -171,7 +171,7 @@ static void
conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const uint8_t *s = src;
const int24_t *s = src;
float *d0 = dst[0], *d1 = dst[1];
uint32_t n, unrolled;
__m128i in[2];
@ -190,14 +190,14 @@ conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
for(n = 0; n < unrolled; n += 4) {
in[0] = _mm_setr_epi32(
*((uint32_t*)&s[0 + 0*n_channels]),
*((uint32_t*)&s[0 + 3*n_channels]),
*((uint32_t*)&s[0 + 6*n_channels]),
*((uint32_t*)&s[0 + 9*n_channels]));
*((uint32_t*)&s[0 + 1*n_channels]),
*((uint32_t*)&s[0 + 2*n_channels]),
*((uint32_t*)&s[0 + 3*n_channels]));
in[1] = _mm_setr_epi32(
*((uint32_t*)&s[3 + 0*n_channels]),
*((uint32_t*)&s[3 + 3*n_channels]),
*((uint32_t*)&s[3 + 6*n_channels]),
*((uint32_t*)&s[3 + 9*n_channels]));
*((uint32_t*)&s[1 + 0*n_channels]),
*((uint32_t*)&s[1 + 1*n_channels]),
*((uint32_t*)&s[1 + 2*n_channels]),
*((uint32_t*)&s[1 + 3*n_channels]));
in[0] = _mm_slli_epi32(in[0], 8);
in[1] = _mm_slli_epi32(in[1], 8);
@ -214,23 +214,23 @@ conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
_mm_store_ps(&d0[n], out[0]);
_mm_store_ps(&d1[n], out[1]);
s += 12 * n_channels;
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
out[0] = _mm_cvtsi32_ss(factor, read_s24(s));
out[1] = _mm_cvtsi32_ss(factor, read_s24(s+3));
out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_mul_ss(out[1], factor);
_mm_store_ss(&d0[n], out[0]);
_mm_store_ss(&d1[n], out[1]);
s += 3 * n_channels;
s += n_channels;
}
}
static void
conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const uint8_t *s = src;
const int24_t *s = src;
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
uint32_t n, unrolled;
__m128i in[4];
@ -251,24 +251,24 @@ conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
for(n = 0; n < unrolled; n += 4) {
in[0] = _mm_setr_epi32(
*((uint32_t*)&s[0 + 0*n_channels]),
*((uint32_t*)&s[0 + 3*n_channels]),
*((uint32_t*)&s[0 + 6*n_channels]),
*((uint32_t*)&s[0 + 9*n_channels]));
*((uint32_t*)&s[0 + 1*n_channels]),
*((uint32_t*)&s[0 + 2*n_channels]),
*((uint32_t*)&s[0 + 3*n_channels]));
in[1] = _mm_setr_epi32(
*((uint32_t*)&s[3 + 0*n_channels]),
*((uint32_t*)&s[3 + 3*n_channels]),
*((uint32_t*)&s[3 + 6*n_channels]),
*((uint32_t*)&s[3 + 9*n_channels]));
*((uint32_t*)&s[1 + 0*n_channels]),
*((uint32_t*)&s[1 + 1*n_channels]),
*((uint32_t*)&s[1 + 2*n_channels]),
*((uint32_t*)&s[1 + 3*n_channels]));
in[2] = _mm_setr_epi32(
*((uint32_t*)&s[6 + 0*n_channels]),
*((uint32_t*)&s[6 + 3*n_channels]),
*((uint32_t*)&s[6 + 6*n_channels]),
*((uint32_t*)&s[6 + 9*n_channels]));
*((uint32_t*)&s[2 + 0*n_channels]),
*((uint32_t*)&s[2 + 1*n_channels]),
*((uint32_t*)&s[2 + 2*n_channels]),
*((uint32_t*)&s[2 + 3*n_channels]));
in[3] = _mm_setr_epi32(
*((uint32_t*)&s[9 + 0*n_channels]),
*((uint32_t*)&s[9 + 3*n_channels]),
*((uint32_t*)&s[9 + 6*n_channels]),
*((uint32_t*)&s[9 + 9*n_channels]));
*((uint32_t*)&s[3 + 0*n_channels]),
*((uint32_t*)&s[3 + 1*n_channels]),
*((uint32_t*)&s[3 + 2*n_channels]),
*((uint32_t*)&s[3 + 3*n_channels]));
in[0] = _mm_slli_epi32(in[0], 8);
in[1] = _mm_slli_epi32(in[1], 8);
@ -295,13 +295,13 @@ conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
_mm_store_ps(&d2[n], out[2]);
_mm_store_ps(&d3[n], out[3]);
s += 12 * n_channels;
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
out[0] = _mm_cvtsi32_ss(factor, read_s24(s));
out[1] = _mm_cvtsi32_ss(factor, read_s24(s+3));
out[2] = _mm_cvtsi32_ss(factor, read_s24(s+6));
out[3] = _mm_cvtsi32_ss(factor, read_s24(s+9));
out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2)));
out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3)));
out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_mul_ss(out[1], factor);
out[2] = _mm_mul_ss(out[2], factor);
@ -310,7 +310,7 @@ conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
_mm_store_ss(&d1[n], out[1]);
_mm_store_ss(&d2[n], out[2]);
_mm_store_ss(&d3[n], out[3]);
s += 3 * n_channels;
s += n_channels;
}
}