mirror of
				https://gitlab.freedesktop.org/pipewire/pipewire.git
				synced 2025-11-03 09:01:54 -05:00 
			
		
		
		
	audioconvert: avoid even more precision loss in F32 to S32 conversion
This is somewhat similar to the S32->F32 conversion improvements, but here things a bit more tricky... The main consideration is that the limits to which we clamp must be valid 32-bit signed integers, but not all such integers are exactly losslessly representable in `float32_t`. For example it we'd clamp to `2147483647`, that is actually a `2147483648.0f`, and `2147483648` is not a valid 32-bit signed integer, so the post-clamp conversion would basically be UB. We don't have this problem for negative bound, though. But as we know, any 25-bit signed integer is losslessly round-trippable through float32_t, and since multiplying by 2 only changes the float's exponent, we can clamp to `2147483520`! The algorithm of selection of the pre-clamping scale is unaffected. This additionally avoids right-shift, and thus is even faster. As `test_lossless_s32_lossless_subset` shows, if the integer is in the form of s25+shift, the maximal absolute error is finally zero. Without going through `float`->`double`->`int`, i'm not sure if the `float`->`int` conversion can be improved further.
This commit is contained in:
		
							parent
							
								
									f4c89b1b40
								
							
						
					
					
						commit
						7c40cafa7c
					
				
					 4 changed files with 50 additions and 70 deletions
				
			
		| 
						 | 
				
			
			@ -316,7 +316,7 @@ conv_s32_to_f32d_4s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
	float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
 | 
			
		||||
	uint32_t n, unrolled;
 | 
			
		||||
	__m256i in[4];
 | 
			
		||||
	__m256 out[4], factor = _mm256_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
	__m256 out[4], factor = _mm256_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
	__m256i mask1 = _mm256_setr_epi32(0*n_channels, 1*n_channels, 2*n_channels, 3*n_channels,
 | 
			
		||||
					  4*n_channels, 5*n_channels, 6*n_channels, 7*n_channels);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -352,7 +352,7 @@ conv_s32_to_f32d_4s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
		s += 8*n_channels;
 | 
			
		||||
	}
 | 
			
		||||
	for(; n < n_samples; n++) {
 | 
			
		||||
        __m128 out[4], factor = _mm_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
		__m128 out[4], factor = _mm_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
		out[0] = _mm_cvtsi32_ss(factor, s[0]);
 | 
			
		||||
		out[1] = _mm_cvtsi32_ss(factor, s[1]);
 | 
			
		||||
		out[2] = _mm_cvtsi32_ss(factor, s[2]);
 | 
			
		||||
| 
						 | 
				
			
			@ -377,7 +377,7 @@ conv_s32_to_f32d_2s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
	float *d0 = dst[0], *d1 = dst[1];
 | 
			
		||||
	uint32_t n, unrolled;
 | 
			
		||||
	__m256i in[4];
 | 
			
		||||
	__m256 out[4], factor = _mm256_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
	__m256 out[4], factor = _mm256_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
	__m256i mask1 = _mm256_setr_epi32(0*n_channels, 1*n_channels, 2*n_channels, 3*n_channels,
 | 
			
		||||
					  4*n_channels, 5*n_channels, 6*n_channels, 7*n_channels);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -403,7 +403,7 @@ conv_s32_to_f32d_2s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
		s += 8*n_channels;
 | 
			
		||||
	}
 | 
			
		||||
	for(; n < n_samples; n++) {
 | 
			
		||||
		__m128 out[2], factor = _mm_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
		__m128 out[2], factor = _mm_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
		out[0] = _mm_cvtsi32_ss(factor, s[0]);
 | 
			
		||||
		out[1] = _mm_cvtsi32_ss(factor, s[1]);
 | 
			
		||||
		out[0] = _mm_mul_ss(out[0], factor);
 | 
			
		||||
| 
						 | 
				
			
			@ -422,7 +422,7 @@ conv_s32_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
	float *d0 = dst[0];
 | 
			
		||||
	uint32_t n, unrolled;
 | 
			
		||||
	__m256i in[2];
 | 
			
		||||
	__m256 out[2], factor = _mm256_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
	__m256 out[2], factor = _mm256_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
	__m256i mask1 = _mm256_setr_epi32(0*n_channels, 1*n_channels, 2*n_channels, 3*n_channels,
 | 
			
		||||
					  4*n_channels, 5*n_channels, 6*n_channels, 7*n_channels);
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -447,7 +447,7 @@ conv_s32_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
		s += 16*n_channels;
 | 
			
		||||
	}
 | 
			
		||||
	for(; n < n_samples; n++) {
 | 
			
		||||
		__m128 out, factor = _mm_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
		__m128 out, factor = _mm_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
		out = _mm_cvtsi32_ss(factor, s[0]);
 | 
			
		||||
		out = _mm_mul_ss(out, factor);
 | 
			
		||||
		_mm_store_ss(&d0[n], out);
 | 
			
		||||
| 
						 | 
				
			
			@ -479,9 +479,9 @@ conv_f32d_to_s32_1s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128 in[1];
 | 
			
		||||
	__m128i out[4];
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 16))
 | 
			
		||||
		unrolled = n_samples & ~3;
 | 
			
		||||
| 
						 | 
				
			
			@ -492,7 +492,6 @@ conv_f32d_to_s32_1s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
 | 
			
		||||
		out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
 | 
			
		||||
		out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
 | 
			
		||||
| 
						 | 
				
			
			@ -507,7 +506,7 @@ conv_f32d_to_s32_1s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_load_ss(&s0[n]);
 | 
			
		||||
		in[0] = _mm_mul_ss(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]) << 7;
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -527,9 +526,9 @@ conv_f32d_to_s32_2s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m256 in[2];
 | 
			
		||||
	__m256i out[2], t[2];
 | 
			
		||||
	__m256 scale = _mm256_set1_ps(S25_SCALE);
 | 
			
		||||
	__m256 int_min = _mm256_set1_ps(S25_MIN);
 | 
			
		||||
	__m256 int_max = _mm256_set1_ps(S25_MAX);
 | 
			
		||||
	__m256 scale = _mm256_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m256 int_min = _mm256_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m256 int_max = _mm256_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 32) &&
 | 
			
		||||
		SPA_IS_ALIGNED(s1, 32))
 | 
			
		||||
| 
						 | 
				
			
			@ -546,8 +545,6 @@ conv_f32d_to_s32_2s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
 | 
			
		||||
		out[0] = _mm256_cvtps_epi32(in[0]);	/* a0 a1 a2 a3 a4 a5 a6 a7 */
 | 
			
		||||
		out[1] = _mm256_cvtps_epi32(in[1]);	/* b0 b1 b2 b3 b4 b5 b6 b7 */
 | 
			
		||||
		out[0] = _mm256_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm256_slli_epi32(out[1], 7);
 | 
			
		||||
 | 
			
		||||
		t[0] = _mm256_unpacklo_epi32(out[0], out[1]); /* a0 b0 a1 b1 a4 b4 a5 b5 */
 | 
			
		||||
		t[1] = _mm256_unpackhi_epi32(out[0], out[1]); /* a2 b2 a3 b3 a6 b6 a7 b7 */
 | 
			
		||||
| 
						 | 
				
			
			@ -576,9 +573,9 @@ conv_f32d_to_s32_2s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	for(; n < n_samples; n++) {
 | 
			
		||||
		__m128 in[2];
 | 
			
		||||
		__m128i out[2];
 | 
			
		||||
		__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
		__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
		__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
		__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
		__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
		__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
		in[0] = _mm_load_ss(&s0[n]);
 | 
			
		||||
		in[1] = _mm_load_ss(&s1[n]);
 | 
			
		||||
| 
						 | 
				
			
			@ -588,7 +585,6 @@ conv_f32d_to_s32_2s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		_mm_storel_epi64((__m128i*)d, out[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -603,9 +599,9 @@ conv_f32d_to_s32_4s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m256 in[4];
 | 
			
		||||
	__m256i out[4], t[4];
 | 
			
		||||
	__m256 scale = _mm256_set1_ps(S25_SCALE);
 | 
			
		||||
	__m256 int_min = _mm256_set1_ps(S25_MIN);
 | 
			
		||||
	__m256 int_max = _mm256_set1_ps(S25_MAX);
 | 
			
		||||
	__m256 scale = _mm256_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m256 int_min = _mm256_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m256 int_max = _mm256_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 32) &&
 | 
			
		||||
		SPA_IS_ALIGNED(s1, 32) &&
 | 
			
		||||
| 
						 | 
				
			
			@ -630,10 +626,6 @@ conv_f32d_to_s32_4s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		out[1] = _mm256_cvtps_epi32(in[1]); /* b0 b1 b2 b3 b4 b5 b6 b7 */
 | 
			
		||||
		out[2] = _mm256_cvtps_epi32(in[2]); /* c0 c1 c2 c3 c4 c5 c6 c7 */
 | 
			
		||||
		out[3] = _mm256_cvtps_epi32(in[3]); /* d0 d1 d2 d3 d4 d5 d6 d7 */
 | 
			
		||||
		out[0] = _mm256_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm256_slli_epi32(out[1], 7);
 | 
			
		||||
		out[2] = _mm256_slli_epi32(out[2], 7);
 | 
			
		||||
		out[3] = _mm256_slli_epi32(out[3], 7);
 | 
			
		||||
 | 
			
		||||
		t[0] = _mm256_unpacklo_epi32(out[0], out[1]); /* a0 b0 a1 b1 a4 b4 a5 b5 */
 | 
			
		||||
		t[1] = _mm256_unpackhi_epi32(out[0], out[1]); /* a2 b2 a3 b3 a6 b6 a7 b7 */
 | 
			
		||||
| 
						 | 
				
			
			@ -658,9 +650,9 @@ conv_f32d_to_s32_4s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	for(; n < n_samples; n++) {
 | 
			
		||||
		__m128 in[4];
 | 
			
		||||
		__m128i out[4];
 | 
			
		||||
		__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
		__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
		__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
		__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
		__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
		__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
		in[0] = _mm_load_ss(&s0[n]);
 | 
			
		||||
		in[1] = _mm_load_ss(&s1[n]);
 | 
			
		||||
| 
						 | 
				
			
			@ -674,7 +666,6 @@ conv_f32d_to_s32_4s_avx2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		_mm_storeu_si128((__m128i*)d, out[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -335,7 +335,7 @@ conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA
 | 
			
		|||
	float *d0 = dst[0];
 | 
			
		||||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128i in;
 | 
			
		||||
	__m128 out, factor = _mm_set1_ps(1.0f / S32_SCALE);
 | 
			
		||||
	__m128 out, factor = _mm_set1_ps(1.0f / S32_SCALE_I2F);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(d0, 16))
 | 
			
		||||
		unrolled = n_samples & ~3;
 | 
			
		||||
| 
						 | 
				
			
			@ -380,9 +380,9 @@ conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128 in[1];
 | 
			
		||||
	__m128i out[4];
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 16))
 | 
			
		||||
		unrolled = n_samples & ~3;
 | 
			
		||||
| 
						 | 
				
			
			@ -393,7 +393,6 @@ conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
 | 
			
		||||
		out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
 | 
			
		||||
		out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
 | 
			
		||||
| 
						 | 
				
			
			@ -408,7 +407,7 @@ conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_load_ss(&s0[n]);
 | 
			
		||||
		in[0] = _mm_mul_ss(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]) << 7;
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -422,9 +421,9 @@ conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128 in[2];
 | 
			
		||||
	__m128i out[2], t[2];
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 16) &&
 | 
			
		||||
		SPA_IS_ALIGNED(s1, 16))
 | 
			
		||||
| 
						 | 
				
			
			@ -441,8 +440,6 @@ conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[1] = _mm_cvtps_epi32(in[1]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm_slli_epi32(out[1], 7);
 | 
			
		||||
 | 
			
		||||
		t[0] = _mm_unpacklo_epi32(out[0], out[1]);
 | 
			
		||||
		t[1] = _mm_unpackhi_epi32(out[0], out[1]);
 | 
			
		||||
| 
						 | 
				
			
			@ -462,7 +459,6 @@ conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		_mm_storel_epi64((__m128i*)d, out[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -477,9 +473,9 @@ conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128 in[4];
 | 
			
		||||
	__m128i out[4];
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s0, 16) &&
 | 
			
		||||
		SPA_IS_ALIGNED(s1, 16) &&
 | 
			
		||||
| 
						 | 
				
			
			@ -506,10 +502,6 @@ conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		out[1] = _mm_cvtps_epi32(in[1]);
 | 
			
		||||
		out[2] = _mm_cvtps_epi32(in[2]);
 | 
			
		||||
		out[3] = _mm_cvtps_epi32(in[3]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm_slli_epi32(out[1], 7);
 | 
			
		||||
		out[2] = _mm_slli_epi32(out[2], 7);
 | 
			
		||||
		out[3] = _mm_slli_epi32(out[3], 7);
 | 
			
		||||
 | 
			
		||||
		_mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]);
 | 
			
		||||
		_mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]);
 | 
			
		||||
| 
						 | 
				
			
			@ -530,7 +522,6 @@ conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_R
 | 
			
		|||
		in[0] = _mm_mul_ps(in[0], scale);
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		_mm_storeu_si128((__m128i*)d, out[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -629,9 +620,9 @@ conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, co
 | 
			
		|||
	uint32_t n, unrolled;
 | 
			
		||||
	__m128 in[1];
 | 
			
		||||
	__m128i out[4];
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S25_SCALE);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S25_MIN);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S25_MAX);
 | 
			
		||||
	__m128 scale = _mm_set1_ps(S32_SCALE_F2I);
 | 
			
		||||
	__m128 int_min = _mm_set1_ps(S32_MIN_F2I);
 | 
			
		||||
	__m128 int_max = _mm_set1_ps(S32_MAX_F2I);
 | 
			
		||||
 | 
			
		||||
	if (SPA_IS_ALIGNED(s, 16))
 | 
			
		||||
		unrolled = n_samples & ~3;
 | 
			
		||||
| 
						 | 
				
			
			@ -643,7 +634,6 @@ conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, co
 | 
			
		|||
		in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
 | 
			
		||||
		in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
 | 
			
		||||
		out[0] = _mm_cvtps_epi32(in[0]);
 | 
			
		||||
		out[0] = _mm_slli_epi32(out[0], 7);
 | 
			
		||||
		out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
 | 
			
		||||
		out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
 | 
			
		||||
		out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
 | 
			
		||||
| 
						 | 
				
			
			@ -659,7 +649,7 @@ conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, co
 | 
			
		|||
		in[0] = _mm_mul_ss(in[0], scale);
 | 
			
		||||
		in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
 | 
			
		||||
		in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]) << 7;
 | 
			
		||||
		*d = _mm_cvtss_si32(in[0]);
 | 
			
		||||
		d += n_channels;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -121,10 +121,14 @@
 | 
			
		|||
 | 
			
		||||
#define S32_MIN			-2147483648
 | 
			
		||||
#define S32_MAX			2147483647
 | 
			
		||||
#define S32_SCALE		2147483648.0f
 | 
			
		||||
#define S32_TO_F32(v)		ITOF(int32_t, v, S32_SCALE, 0.0f)
 | 
			
		||||
#define S32_SCALE_I2F		2147483648.0f
 | 
			
		||||
#define S32_TO_F32(v)		ITOF(int32_t, v, S32_SCALE_I2F, 0.0f)
 | 
			
		||||
#define S32S_TO_F32(v)		S32_TO_F32(bswap_32(v))
 | 
			
		||||
#define F32_TO_S32_D(v,d)	S25_32_TO_S32(F32_TO_S25_32_D(v,d))
 | 
			
		||||
 | 
			
		||||
#define S32_MIN_F2I		((int32_t)(((uint32_t)(S25_MIN)) << 7))
 | 
			
		||||
#define S32_MAX_F2I		((S25_MAX) << 7)
 | 
			
		||||
#define S32_SCALE_F2I		(-((float)(S32_MIN_F2I)))
 | 
			
		||||
#define F32_TO_S32_D(v,d)	FTOI(int32_t, v, S32_SCALE_F2I, 0.0f, d, S32_MIN_F2I, S32_MAX_F2I)
 | 
			
		||||
#define F32_TO_S32(v)		F32_TO_S32_D(v, 0.0f)
 | 
			
		||||
#define F32_TO_S32S(v)		bswap_32(F32_TO_S32(v))
 | 
			
		||||
#define F32_TO_S32S_D(v,d)	bswap_32(F32_TO_S32_D(v,d))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -299,11 +299,11 @@ static void test_f32_s32(void)
 | 
			
		|||
		1.0f/0x100000000, -1.0f/0x100000000, 1.0f/0x200000000, -1.0f/0x200000000,
 | 
			
		||||
	};
 | 
			
		||||
	static const int32_t out[] = { 0x00000000, 0x7fffff80, 0x80000000,
 | 
			
		||||
		0x40000000, 0xc0000000, 0x7fffff80, 0x80000000, 0x00000100,
 | 
			
		||||
		0xffffff00, 0x00000100, 0xffffff00, 0x00000080, 0xffffff80,
 | 
			
		||||
		0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 | 
			
		||||
		0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 | 
			
		||||
		0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
 | 
			
		||||
		0x40000000, 0xc0000000, 0x7fffff80, 0x80000000, 0x000000cd,
 | 
			
		||||
		0xffffff33, 0x00000100, 0xffffff00, 0x00000080, 0xffffff80,
 | 
			
		||||
		0x00000040, 0xffffffc0, 0x00000020, 0xffffffe0, 0x00000010,
 | 
			
		||||
		0xfffffff0, 0x00000008, 0xfffffff8, 0x00000004, 0xfffffffc,
 | 
			
		||||
		0x00000002, 0xfffffffe, 0x00000001, 0xffffffff, 0x00000000,
 | 
			
		||||
		0x00000000, 0x00000000, 0x00000000,
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -687,20 +687,15 @@ static void test_lossless_s32_lossless_subset(void)
 | 
			
		|||
{
 | 
			
		||||
	int32_t i, j;
 | 
			
		||||
 | 
			
		||||
	int all_lossless = 1;
 | 
			
		||||
	int32_t max_abs_err = -1;
 | 
			
		||||
	fprintf(stderr, "test %s:\n", __func__);
 | 
			
		||||
	for (i = S25_MIN; i <= S25_MAX; i+=1) {
 | 
			
		||||
		for(j = 0; j < 8; ++j) {
 | 
			
		||||
			int32_t s = i * (1<<j);
 | 
			
		||||
			float v = S32_TO_F32(s);
 | 
			
		||||
			int32_t t = F32_TO_S32(v);
 | 
			
		||||
			all_lossless &= s == t;
 | 
			
		||||
			max_abs_err = SPA_MAX(max_abs_err, SPA_ABS(s - t));
 | 
			
		||||
			spa_assert_se(s == t);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	spa_assert_se(!all_lossless);
 | 
			
		||||
	spa_assert_se(max_abs_err == 64);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void test_lossless_u32(void)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue