audioconvert: add SSE (de)interleave_32(s) versions

This commit is contained in:
Wim Taymans 2022-03-11 13:17:10 +01:00
parent f06ee28140
commit 734470f0cd
3 changed files with 376 additions and 0 deletions

View file

@ -543,6 +543,354 @@ conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const voi
conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
}
static void
conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
uint32_t n_channels, uint32_t n_samples)
{
const int32_t *s0 = src[0];
int32_t *d = dst;
uint32_t n, unrolled;
__m128i out[4];
if (SPA_IS_ALIGNED(s0, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_si128((__m128i*)&s0[n]);
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
d += 4*n_channels;
}
for(; n < n_samples; n++) {
*d = s0[n];
d += n_channels;
}
}
static void
conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
uint32_t n_channels, uint32_t n_samples)
{
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
float *d = dst;
uint32_t n, unrolled;
__m128 out[4];
if (SPA_IS_ALIGNED(s0, 16) &&
SPA_IS_ALIGNED(s1, 16) &&
SPA_IS_ALIGNED(s2, 16) &&
SPA_IS_ALIGNED(s3, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_ps(&s0[n]);
out[1] = _mm_load_ps(&s1[n]);
out[2] = _mm_load_ps(&s2[n]);
out[3] = _mm_load_ps(&s3[n]);
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
_mm_storeu_ps((d + 0*n_channels), out[0]);
_mm_storeu_ps((d + 1*n_channels), out[1]);
_mm_storeu_ps((d + 2*n_channels), out[2]);
_mm_storeu_ps((d + 3*n_channels), out[3]);
d += 4*n_channels;
}
for(; n < n_samples; n++) {
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
_mm_storeu_ps(d, out[0]);
d += n_channels;
}
}
void
conv_interleave_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
int32_t *d = dst[0];
uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
for(; i < n_channels; i++)
conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
}
#define _MM_BSWAP_EPI32(x) \
({ \
__m128i a = _mm_or_si128( \
_mm_slli_epi16(x, 8), \
_mm_srli_epi16(x, 8)); \
a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
})
static void
conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
uint32_t n_channels, uint32_t n_samples)
{
const int32_t *s0 = src[0];
int32_t *d = dst;
uint32_t n, unrolled;
__m128i out[4];
if (SPA_IS_ALIGNED(s0, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_si128((__m128i*)&s0[n]);
out[0] = _MM_BSWAP_EPI32(out[0]);
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
d += 4*n_channels;
}
for(; n < n_samples; n++) {
*d = bswap_32(s0[n]);
d += n_channels;
}
}
static void
conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
uint32_t n_channels, uint32_t n_samples)
{
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
float *d = dst;
uint32_t n, unrolled;
__m128 out[4];
if (SPA_IS_ALIGNED(s0, 16) &&
SPA_IS_ALIGNED(s1, 16) &&
SPA_IS_ALIGNED(s2, 16) &&
SPA_IS_ALIGNED(s3, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_ps(&s0[n]);
out[1] = _mm_load_ps(&s1[n]);
out[2] = _mm_load_ps(&s2[n]);
out[3] = _mm_load_ps(&s3[n]);
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
_mm_storeu_ps(&d[0*n_channels], out[0]);
_mm_storeu_ps(&d[1*n_channels], out[1]);
_mm_storeu_ps(&d[2*n_channels], out[2]);
_mm_storeu_ps(&d[3*n_channels], out[3]);
d += 4*n_channels;
}
for(; n < n_samples; n++) {
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
_mm_storeu_ps(d, out[0]);
d += n_channels;
}
}
void
conv_interleave_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
int32_t *d = dst[0];
uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
for(; i < n_channels; i++)
conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
}
static void
conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const float *s = src;
float *d0 = dst[0];
uint32_t n, unrolled;
__m128 out;
if (SPA_IS_ALIGNED(d0, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out = _mm_setr_ps(s[0*n_channels],
s[1*n_channels],
s[2*n_channels],
s[3*n_channels]);
_mm_store_ps(&d0[n], out);
s += 4*n_channels;
}
for(; n < n_samples; n++) {
d0[n] = *s;
s += n_channels;
}
}
static void
conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const float *s = src;
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
uint32_t n, unrolled;
__m128 out[4];
if (SPA_IS_ALIGNED(d0, 16) &&
SPA_IS_ALIGNED(d1, 16) &&
SPA_IS_ALIGNED(d2, 16) &&
SPA_IS_ALIGNED(d3, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_ps(&s[0]);
out[1] = _mm_load_ps(&s[4]);
out[2] = _mm_load_ps(&s[8]);
out[3] = _mm_load_ps(&s[12]);
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
_mm_store_ps(&d0[n], out[0]);
_mm_store_ps(&d1[n], out[1]);
_mm_store_ps(&d2[n], out[2]);
_mm_store_ps(&d3[n], out[3]);
s += 16 * n_channels;
}
for(; n < n_samples; n++) {
d0[n] = s[0];
d1[n] = s[1];
d2[n] = s[2];
d3[n] = s[3];
s += 4 * n_channels;
}
}
void
conv_deinterleave_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float *s = src[0];
uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
for(; i < n_channels; i++)
conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
}
static void
conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const float *s = src;
float *d0 = dst[0];
uint32_t n, unrolled;
__m128 out;
if (SPA_IS_ALIGNED(d0, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out = _mm_setr_ps(s[0*n_channels],
s[1*n_channels],
s[2*n_channels],
s[3*n_channels]);
out = (__m128) _MM_BSWAP_EPI32((__m128i)out);
_mm_store_ps(&d0[n], out);
s += 4*n_channels;
}
for(; n < n_samples; n++) {
d0[n] = bswap_32(*s);
s += n_channels;
}
}
static void
conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const float *s = src;
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
uint32_t n, unrolled;
__m128 out[4];
if (SPA_IS_ALIGNED(d0, 16) &&
SPA_IS_ALIGNED(d1, 16) &&
SPA_IS_ALIGNED(d2, 16) &&
SPA_IS_ALIGNED(d3, 16))
unrolled = n_samples & ~3;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 4) {
out[0] = _mm_load_ps(&s[0 * n_channels]);
out[1] = _mm_load_ps(&s[1 * n_channels]);
out[2] = _mm_load_ps(&s[2 * n_channels]);
out[3] = _mm_load_ps(&s[3 * n_channels]);
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
_mm_store_ps(&d0[n], out[0]);
_mm_store_ps(&d1[n], out[1]);
_mm_store_ps(&d2[n], out[2]);
_mm_store_ps(&d3[n], out[3]);
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
d0[n] = bswap_32(s[0]);
d1[n] = bswap_32(s[1]);
d2[n] = bswap_32(s[2]);
d3[n] = bswap_32(s[3]);
s += n_channels;
}
}
void
conv_deinterleave_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
uint32_t n_samples)
{
const float *s = src[0];
uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
for(; i < n_channels; i++)
conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
}
static void
conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
uint32_t n_samples)

View file

@ -84,10 +84,22 @@ static struct conv_info conv_table[] =
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_copy32d_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_F32, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_interleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32, 0, 0, conv_interleave_32_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32s_sse2 },
#endif
{ SPA_AUDIO_FORMAT_F32_OE, SPA_AUDIO_FORMAT_F32P, 0, 0, conv_deinterleave_32s_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32_OE, 0, 0, conv_interleave_32s_sse2 },
#endif
{ SPA_AUDIO_FORMAT_F32P, SPA_AUDIO_FORMAT_F32_OE, 0, 0, conv_interleave_32s_c },
{ SPA_AUDIO_FORMAT_U32, SPA_AUDIO_FORMAT_F32, 0, 0, conv_u32_to_f32_c },
@ -259,7 +271,13 @@ static struct conv_info conv_table[] =
/* s32 */
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_copy32d_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_deinterleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_S32, SPA_AUDIO_FORMAT_S32P, 0, 0, conv_deinterleave_32_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, 0, conv_interleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_S32P, SPA_AUDIO_FORMAT_S32, 0, 0, conv_interleave_32_c },
/* s24 */
@ -271,7 +289,13 @@ static struct conv_info conv_table[] =
/* s24_32 */
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_copy32_c },
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_copy32d_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_deinterleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_S24_32, SPA_AUDIO_FORMAT_S24_32P, 0, 0, conv_deinterleave_32_c },
#if defined (HAVE_SSE2)
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_interleave_32_sse2 },
#endif
{ SPA_AUDIO_FORMAT_S24_32P, SPA_AUDIO_FORMAT_S24_32, 0, 0, conv_interleave_32_c },
/* F64 */

View file

@ -328,6 +328,10 @@ DEFINE_FUNCTION(f32_to_s16, sse2);
DEFINE_FUNCTION(f32d_to_s16_2, sse2);
DEFINE_FUNCTION(f32d_to_s16, sse2);
DEFINE_FUNCTION(f32d_to_s16d, sse2);
DEFINE_FUNCTION(deinterleave_32, sse2);
DEFINE_FUNCTION(deinterleave_32s, sse2);
DEFINE_FUNCTION(interleave_32, sse2);
DEFINE_FUNCTION(interleave_32s, sse2);
#endif
#if defined(HAVE_SSSE3)
DEFINE_FUNCTION(s24_to_f32d, ssse3);