fmt-ops: move AVX

This commit is contained in:
Wim Taymans 2020-03-18 10:06:54 +01:00
parent 949dba7bfc
commit 55633ebf9a

View file

@ -33,26 +33,32 @@ conv_s16_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
const int16_t *s = src; const int16_t *s = src;
float *d0 = dst[0]; float *d0 = dst[0];
uint32_t n, unrolled; uint32_t n, unrolled;
__m128i in; __m256i in;
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE); __m256 out, factor = _mm256_set1_ps(1.0f / S16_SCALE);
if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16))) if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 32)))
unrolled = n_samples & ~3; unrolled = n_samples & ~7;
else else
unrolled = 0; unrolled = 0;
for(n = 0; n < unrolled; n += 4) { for(n = 0; n < unrolled; n += 8) {
in = _mm_insert_epi16(in, s[0*n_channels], 1); in = _mm256_insert_epi16(in, s[0*n_channels], 1);
in = _mm_insert_epi16(in, s[1*n_channels], 3); in = _mm256_insert_epi16(in, s[1*n_channels], 3);
in = _mm_insert_epi16(in, s[2*n_channels], 5); in = _mm256_insert_epi16(in, s[2*n_channels], 5);
in = _mm_insert_epi16(in, s[3*n_channels], 7); in = _mm256_insert_epi16(in, s[3*n_channels], 7);
in = _mm_srai_epi32(in, 16); in = _mm256_insert_epi16(in, s[4*n_channels], 9);
out = _mm_cvtepi32_ps(in); in = _mm256_insert_epi16(in, s[5*n_channels], 11);
out = _mm_mul_ps(out, factor); in = _mm256_insert_epi16(in, s[6*n_channels], 13);
_mm_store_ps(&d0[n], out); in = _mm256_insert_epi16(in, s[7*n_channels], 15);
s += 4*n_channels;
in = _mm256_srai_epi32(in, 16);
out = _mm256_cvtepi32_ps(in);
out = _mm256_mul_ps(out, factor);
_mm256_store_ps(&d0[n], out);
s += 8*n_channels;
} }
for(; n < n_samples; n++) { for(; n < n_samples; n++) {
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
out = _mm_cvtsi32_ss(out, s[0]); out = _mm_cvtsi32_ss(out, s[0]);
out = _mm_mul_ss(out, factor); out = _mm_mul_ss(out, factor);
_mm_store_ss(&d0[n], out); _mm_store_ss(&d0[n], out);
@ -78,46 +84,47 @@ conv_s16_to_f32d_2_avx2(struct convert *conv, void * SPA_RESTRICT dst[], const v
const int16_t *s = src[0]; const int16_t *s = src[0];
float *d0 = dst[0], *d1 = dst[1]; float *d0 = dst[0], *d1 = dst[1];
uint32_t n, unrolled; uint32_t n, unrolled;
__m128i in[2], t[4]; __m256i in[2], t[4];
__m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE); __m256 out[4], factor = _mm256_set1_ps(1.0f / S16_SCALE);
if (SPA_IS_ALIGNED(s, 16) && if (SPA_IS_ALIGNED(s, 32) &&
SPA_IS_ALIGNED(d0, 16) && SPA_IS_ALIGNED(d0, 32) &&
SPA_IS_ALIGNED(d1, 16)) SPA_IS_ALIGNED(d1, 32))
unrolled = n_samples & ~7; unrolled = n_samples & ~15;
else else
unrolled = 0; unrolled = 0;
for(n = 0; n < unrolled; n += 8) { for(n = 0; n < unrolled; n += 16) {
in[0] = _mm_load_si128((__m128i*)(s + 0)); in[0] = _mm256_load_si256((__m256i*)(s + 0));
in[1] = _mm_load_si128((__m128i*)(s + 8)); in[1] = _mm256_load_si256((__m256i*)(s + 16));
t[0] = _mm_slli_epi32(in[0], 16); t[0] = _mm256_slli_epi32(in[0], 16);
t[0] = _mm_srai_epi32(t[0], 16); t[0] = _mm256_srai_epi32(t[0], 16);
out[0] = _mm_cvtepi32_ps(t[0]); out[0] = _mm256_cvtepi32_ps(t[0]);
out[0] = _mm_mul_ps(out[0], factor); out[0] = _mm256_mul_ps(out[0], factor);
t[1] = _mm_srai_epi32(in[0], 16); t[1] = _mm256_srai_epi32(in[0], 16);
out[1] = _mm_cvtepi32_ps(t[1]); out[1] = _mm256_cvtepi32_ps(t[1]);
out[1] = _mm_mul_ps(out[1], factor); out[1] = _mm256_mul_ps(out[1], factor);
t[2] = _mm_slli_epi32(in[1], 16); t[2] = _mm256_slli_epi32(in[1], 16);
t[2] = _mm_srai_epi32(t[2], 16); t[2] = _mm256_srai_epi32(t[2], 16);
out[2] = _mm_cvtepi32_ps(t[2]); out[2] = _mm256_cvtepi32_ps(t[2]);
out[2] = _mm_mul_ps(out[2], factor); out[2] = _mm256_mul_ps(out[2], factor);
t[3] = _mm_srai_epi32(in[1], 16); t[3] = _mm256_srai_epi32(in[1], 16);
out[3] = _mm_cvtepi32_ps(t[3]); out[3] = _mm256_cvtepi32_ps(t[3]);
out[3] = _mm_mul_ps(out[3], factor); out[3] = _mm256_mul_ps(out[3], factor);
_mm_store_ps(&d0[n + 0], out[0]); _mm256_store_ps(&d0[n + 0], out[0]);
_mm_store_ps(&d1[n + 0], out[1]); _mm256_store_ps(&d1[n + 0], out[1]);
_mm_store_ps(&d0[n + 4], out[2]); _mm256_store_ps(&d0[n + 8], out[2]);
_mm_store_ps(&d1[n + 4], out[3]); _mm256_store_ps(&d1[n + 8], out[3]);
s += 16; s += 32;
} }
for(; n < n_samples; n++) { for(; n < n_samples; n++) {
__m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE);
out[0] = _mm_cvtsi32_ss(out[0], s[0]); out[0] = _mm_cvtsi32_ss(out[0], s[0]);
out[0] = _mm_mul_ss(out[0], factor); out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_cvtsi32_ss(out[1], s[1]); out[1] = _mm_cvtsi32_ss(out[1], s[1]);
@ -330,6 +337,140 @@ conv_s24_to_f32d_avx2(struct convert *conv, void * SPA_RESTRICT dst[], const voi
} }
void
conv_s32_to_f32d_4s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const int32_t *s = src;
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
uint32_t n, unrolled;
__m256i in[4], t[4];
__m256 out[4], factor = _mm256_set1_ps(1.0f / S24_SCALE);
if (SPA_IS_ALIGNED(d0, 32) &&
SPA_IS_ALIGNED(d1, 32) &&
SPA_IS_ALIGNED(d2, 32) &&
SPA_IS_ALIGNED(d3, 32))
unrolled = n_samples & ~7;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 8) {
in[0] = _mm256_loadu2_m128i((__m128i*)&s[4*n_channels], (__m128i*)&s[0*n_channels]); /* a0 b0 c0 d0 a4 b4 c4 d4 */
in[1] = _mm256_loadu2_m128i((__m128i*)&s[5*n_channels], (__m128i*)&s[1*n_channels]); /* a1 b1 c1 d1 a5 b5 c5 d5 */
in[2] = _mm256_loadu2_m128i((__m128i*)&s[6*n_channels], (__m128i*)&s[2*n_channels]); /* a2 b2 c2 d2 a6 b6 c6 d6 */
in[3] = _mm256_loadu2_m128i((__m128i*)&s[7*n_channels], (__m128i*)&s[3*n_channels]); /* a3 b3 c3 d3 a7 b7 c7 d7 */
in[0] = _mm256_srai_epi32(in[0], 8);
in[1] = _mm256_srai_epi32(in[1], 8);
in[2] = _mm256_srai_epi32(in[2], 8);
in[3] = _mm256_srai_epi32(in[3], 8);
t[0] = _mm256_unpacklo_epi32(in[0], in[1]); /* a0 a1 b0 b1 a4 a5 b4 b5 */
t[1] = _mm256_unpackhi_epi32(in[0], in[1]); /* c0 c1 d0 d1 c4 c5 d4 d5 */
t[2] = _mm256_unpacklo_epi32(in[2], in[3]); /* a2 a3 b2 b3 a6 a7 b6 b7 */
t[3] = _mm256_unpackhi_epi32(in[2], in[3]); /* c2 c3 d2 d3 c6 c7 d6 d7 */
in[0] = _mm256_unpacklo_epi64(t[0], t[2]); /* a0 a1 a2 a3 a4 a5 a6 a7 */
in[1] = _mm256_unpackhi_epi64(t[0], t[2]); /* b0 b1 b2 b3 b4 b5 b6 b7 */
in[2] = _mm256_unpacklo_epi64(t[1], t[3]); /* c0 c1 c2 c3 c4 c5 c6 c7 */
in[3] = _mm256_unpackhi_epi64(t[1], t[3]); /* d0 d1 d2 d3 d4 d5 d6 d7 */
out[0] = _mm256_cvtepi32_ps(in[0]);
out[1] = _mm256_cvtepi32_ps(in[1]);
out[2] = _mm256_cvtepi32_ps(in[2]);
out[3] = _mm256_cvtepi32_ps(in[3]);
out[0] = _mm256_mul_ps(out[0], factor);
out[1] = _mm256_mul_ps(out[1], factor);
out[2] = _mm256_mul_ps(out[2], factor);
out[3] = _mm256_mul_ps(out[3], factor);
_mm256_store_ps(&d0[n], out[0]);
_mm256_store_ps(&d1[n], out[1]);
_mm256_store_ps(&d2[n], out[2]);
_mm256_store_ps(&d3[n], out[3]);
s += 8*n_channels;
}
for(; n < n_samples; n++) {
__m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
out[0] = _mm_cvtsi32_ss(out[0], s[0]>>8);
out[1] = _mm_cvtsi32_ss(out[1], s[1]>>8);
out[2] = _mm_cvtsi32_ss(out[2], s[2]>>8);
out[3] = _mm_cvtsi32_ss(out[3], s[3]>>8);
out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_mul_ss(out[1], factor);
out[2] = _mm_mul_ss(out[2], factor);
out[3] = _mm_mul_ss(out[3], factor);
_mm_store_ss(&d0[n], out[0]);
_mm_store_ss(&d1[n], out[1]);
_mm_store_ss(&d2[n], out[2]);
_mm_store_ss(&d3[n], out[3]);
s += n_channels;
}
}
void
conv_s32_to_f32d_2s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples)
{
const int32_t *s = src;
float *d0 = dst[0], *d1 = dst[1];
uint32_t n, unrolled;
__m256i in[4], t[4];
__m256 out[4], factor = _mm256_set1_ps(1.0f / S24_SCALE);
__m256i mask = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
if (SPA_IS_ALIGNED(d0, 32) &&
SPA_IS_ALIGNED(d1, 32))
unrolled = n_samples & ~7;
else
unrolled = 0;
for(n = 0; n < unrolled; n += 8) {
in[0] = _mm256_setr_epi64x(
*(int64_t*)&s[0*n_channels],
*(int64_t*)&s[1*n_channels],
*(int64_t*)&s[2*n_channels],
*(int64_t*)&s[3*n_channels]);
in[1] = _mm256_setr_epi64x(
*(int64_t*)&s[4*n_channels],
*(int64_t*)&s[5*n_channels],
*(int64_t*)&s[6*n_channels],
*(int64_t*)&s[7*n_channels]);
in[0] = _mm256_srai_epi32(in[0], 8);
in[1] = _mm256_srai_epi32(in[1], 8);
t[0] = _mm256_permutevar8x32_epi32(in[0], mask);
t[1] = _mm256_permutevar8x32_epi32(in[1], mask);
in[0] = _mm256_permute2x128_si256(t[0], t[1], 0 | (2 << 4));
in[1] = _mm256_permute2x128_si256(t[0], t[1], 1 | (3 << 4));
out[0] = _mm256_cvtepi32_ps(in[0]);
out[1] = _mm256_cvtepi32_ps(in[1]);
out[0] = _mm256_mul_ps(out[0], factor);
out[1] = _mm256_mul_ps(out[1], factor);
_mm256_store_ps(&d0[n], out[0]);
_mm256_store_ps(&d1[n], out[1]);
s += 8*n_channels;
}
for(; n < n_samples; n++) {
__m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE);
out[0] = _mm_cvtsi32_ss(out[0], s[0]>>8);
out[1] = _mm_cvtsi32_ss(out[1], s[1]>>8);
out[0] = _mm_mul_ss(out[0], factor);
out[1] = _mm_mul_ss(out[1], factor);
_mm_store_ss(&d0[n], out[0]);
_mm_store_ss(&d1[n], out[1]);
s += n_channels;
}
}
void void
conv_s32_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src, conv_s32_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
uint32_t n_channels, uint32_t n_samples) uint32_t n_channels, uint32_t n_samples)
@ -337,26 +478,31 @@ conv_s32_to_f32d_1s_avx2(void *data, void * SPA_RESTRICT dst[], const void * SPA
const int32_t *s = src; const int32_t *s = src;
float *d0 = dst[0]; float *d0 = dst[0];
uint32_t n, unrolled; uint32_t n, unrolled;
__m128i in; __m256i in;
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE); __m256 out, factor = _mm256_set1_ps(1.0f / S24_SCALE);
if (SPA_IS_ALIGNED(d0, 16)) if (SPA_IS_ALIGNED(d0, 32))
unrolled = n_samples & ~3; unrolled = n_samples & ~7;
else else
unrolled = 0; unrolled = 0;
for(n = 0; n < unrolled; n += 4) { for(n = 0; n < unrolled; n += 8) {
in = _mm_setr_epi32(s[0*n_channels], in = _mm256_setr_epi32(s[0*n_channels],
s[1*n_channels], s[1*n_channels],
s[2*n_channels], s[2*n_channels],
s[3*n_channels]); s[3*n_channels],
in = _mm_srai_epi32(in, 8); s[4*n_channels],
out = _mm_cvtepi32_ps(in); s[5*n_channels],
out = _mm_mul_ps(out, factor); s[6*n_channels],
_mm_store_ps(&d0[n], out); s[7*n_channels]);
s += 4*n_channels; in = _mm256_srai_epi32(in, 8);
out = _mm256_cvtepi32_ps(in);
out = _mm256_mul_ps(out, factor);
_mm256_store_ps(&d0[n], out);
s += 8*n_channels;
} }
for(; n < n_samples; n++) { for(; n < n_samples; n++) {
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
out = _mm_cvtsi32_ss(out, s[0]>>8); out = _mm_cvtsi32_ss(out, s[0]>>8);
out = _mm_mul_ss(out, factor); out = _mm_mul_ss(out, factor);
_mm_store_ss(&d0[n], out); _mm_store_ss(&d0[n], out);
@ -371,6 +517,10 @@ conv_s32_to_f32d_avx2(struct convert *conv, void * SPA_RESTRICT dst[], const voi
const int32_t *s = src[0]; const int32_t *s = src[0];
uint32_t i = 0, n_channels = conv->n_channels; uint32_t i = 0, n_channels = conv->n_channels;
for(; i + 3 < n_channels; i += 4)
conv_s32_to_f32d_4s_avx2(conv, &dst[i], &s[i], n_channels, n_samples);
for(; i + 1 < n_channels; i += 2)
conv_s32_to_f32d_2s_avx2(conv, &dst[i], &s[i], n_channels, n_samples);
for(; i < n_channels; i++) for(; i < n_channels; i++)
conv_s32_to_f32d_1s_avx2(conv, &dst[i], &s[i], n_channels, n_samples); conv_s32_to_f32d_1s_avx2(conv, &dst[i], &s[i], n_channels, n_samples);
} }