resample-native: implement variable rate

This commit is contained in:
Wim Taymans 2019-03-26 17:25:14 +01:00
parent ecc3e78ad4
commit 555fe2f9f5
2 changed files with 61 additions and 40 deletions

View file

@ -28,9 +28,9 @@ static void do_resample_full_##arch(struct resample *r, \
void * SPA_RESTRICT dst[], uint32_t offs, uint32_t *out_len) \
{ \
struct native_data *data = r->data; \
uint32_t index, phase; \
uint32_t out_rate = data->out_rate; \
uint32_t n_taps = data->n_taps; \
uint32_t index, phase, stride = data->oversample * n_taps; \
uint32_t c, o, olen = *out_len, ilen = *in_len; \
\
if (r->channels == 0) \
@ -47,7 +47,7 @@ static void do_resample_full_##arch(struct resample *r, \
const float *ip, *taps; \
\
ip = &s[index]; \
taps = &data->filter[phase * n_taps]; \
taps = &data->filter[phase * stride]; \
index += data->inc; \
phase += data->frac; \
if (phase >= out_rate) { \

View file

@ -32,6 +32,7 @@ struct native_data {
double rate;
uint32_t n_taps;
uint32_t n_phases;
uint32_t oversample;
uint32_t in_rate;
uint32_t out_rate;
uint32_t index;
@ -95,13 +96,11 @@ static int build_filter(float *taps, uint32_t stride, uint32_t n_taps, uint32_t
for (i = 0; i <= n_phases; i++) {
double t = (double) i / (double) n_phases;
for (j = 0; j < n_taps12; j++, t += 1.0)
for (j = 0; j < n_taps12; j++, t += 1.0) {
taps[(n_phases - i) * stride + n_taps12 + j] =
taps[i * stride + (n_taps12 - j - 1)] =
cutoff * sinc(t * cutoff) * blackman(t, n_taps);
}
for (i = 0; i <= n_phases; i++) {
for (j = n_taps12; j < n_taps; j++)
taps[i * stride + j] = taps[(n_phases - i) * stride + n_taps - j - 1];
}
}
return 0;
}
@ -112,8 +111,48 @@ static void impl_native_free(struct resample *r)
r->data = NULL;
}
static inline uint32_t calc_gcd(uint32_t a, uint32_t b)
{
while (b != 0) {
uint32_t temp = a;
a = b;
b = temp % b;
}
return a;
}
static void impl_native_update_rate(struct resample *r, double rate)
{
struct native_data *data = r->data;
uint32_t in_rate, out_rate, phase, gcd;
in_rate = r->i_rate * rate;
out_rate = r->o_rate;
phase = data->phase;
gcd = calc_gcd(in_rate, out_rate);
gcd = calc_gcd(gcd, phase);
data->rate = rate;
data->phase = phase / gcd;
data->in_rate = in_rate / gcd;
data->out_rate = out_rate / gcd;
data->inc = data->in_rate / data->out_rate;
data->frac = data->in_rate % data->out_rate;
fprintf(stderr, "in %d out %d %d %d %d\n",
in_rate, out_rate, gcd, data->inc, data->frac);
data->func = rate == 1.0 ? do_resample_full_c : do_resample_inter_c;
#if defined (__SSE__)
if (r->cpu_flags & SPA_CPU_FLAG_SSE)
data->func = rate == 1.0 ? do_resample_full_sse : do_resample_inter_sse;
#endif
#if defined (__SSSE3__)
if (r->cpu_flags & SPA_CPU_FLAG_SSSE3)
data->func = rate == 1.0 ? do_resample_full_ssse3 : do_resample_inter_ssse3;
#endif
}
static void impl_native_process(struct resample *r,
@ -190,23 +229,13 @@ static uint32_t impl_native_delay (struct resample *r)
return d->n_taps;
}
static inline uint32_t calc_gcd(uint32_t a, uint32_t b)
{
while (b != 0) {
uint32_t temp = a;
a = b;
b = b % temp;
}
return a;
}
static int impl_native_init(struct resample *r)
{
struct native_data *d;
const struct quality *q = &blackman_qualities[DEFAULT_QUALITY];
double scale;
uint32_t c, n_taps, n_phases, filter_size, in_rate, out_rate, gcd, stride;
uint32_t history_stride, history_size;
uint32_t history_stride, history_size, oversample;
r->free = impl_native_free;
r->update_rate = impl_native_update_rate;
@ -216,15 +245,18 @@ static int impl_native_init(struct resample *r)
gcd = calc_gcd(r->i_rate, r->o_rate);
in_rate = r->i_rate /= gcd;
out_rate = r->o_rate /= gcd;
in_rate = r->i_rate / gcd;
out_rate = r->o_rate / gcd;
scale = SPA_MIN(q->cutoff * r->o_rate / r->i_rate, 1.0);
scale = SPA_MIN(q->cutoff * out_rate / in_rate, 1.0);
n_taps = SPA_ROUND_UP_N((uint32_t)ceil(q->n_taps / scale), 8);
stride = n_taps * sizeof(float);
n_phases = out_rate;
oversample = (255 + n_phases) / n_phases;
n_phases *= oversample;
fprintf(stderr, "in %d out %d %d %d %d %f\n", in_rate, out_rate, gcd, n_taps, n_phases, scale);
fprintf(stderr, "in %d out %d %d %d %d %f %d\n",
in_rate, out_rate, gcd, n_taps, n_phases, scale, oversample);
filter_size = stride * (n_phases + 1);
history_stride = 2 * n_taps * sizeof(float);
@ -240,7 +272,11 @@ static int impl_native_init(struct resample *r)
return -ENOMEM;
r->data = d;
d->rate = 1.0f;
d->n_taps = n_taps;
d->n_phases = n_phases;
d->oversample = oversample;
d->in_rate = in_rate;
d->out_rate = out_rate;
d->filter = SPA_MEMBER(d, sizeof(struct native_data), float);
d->filter = SPA_PTR_ALIGN(d->filter, 16, float);
d->hist_mem = SPA_MEMBER(d->filter, filter_size, float);
@ -249,25 +285,10 @@ static int impl_native_init(struct resample *r)
for (c = 0; c < r->channels; c++)
d->history[c] = SPA_MEMBER(d->hist_mem, c * history_stride, float);
d->in_rate = in_rate;
d->out_rate = out_rate;
d->inc = in_rate / out_rate;
d->frac = in_rate % out_rate;
d->n_taps = n_taps;
d->n_phases = n_phases;
build_filter(d->filter, n_taps, n_taps, n_phases, scale);
impl_native_reset (r);
impl_native_reset(r);
impl_native_update_rate(r, 1.0);
d->func = d->rate == 1.0f ? do_resample_full_c : do_resample_inter_c;
#if defined (__SSE__)
if (r->cpu_flags & SPA_CPU_FLAG_SSE)
d->func = d->rate == 1.0f ? do_resample_full_sse : do_resample_inter_sse;
#endif
#if defined (__SSSE3__)
if (r->cpu_flags & SPA_CPU_FLAG_SSSE3)
d->func = d->rate == 1.0f ? do_resample_full_ssse3 : do_resample_inter_ssse3;
#endif
return 0;
}