mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
bluez5: split rate control out of decode-buffer
This commit is contained in:
parent
e0939ff8ab
commit
41c155bb4c
2 changed files with 138 additions and 126 deletions
|
|
@ -38,10 +38,13 @@
|
|||
#include <spa/utils/defs.h>
|
||||
#include <spa/support/log.h>
|
||||
|
||||
#include "rate-control.h"
|
||||
|
||||
#define BUFFERING_LONG_MSEC (2*60000)
|
||||
#define BUFFERING_SHORT_MSEC 1000
|
||||
#define BUFFERING_RATE_DIFF_MAX 0.005
|
||||
|
||||
|
||||
/**
|
||||
* Safety margin.
|
||||
*
|
||||
|
|
@ -51,131 +54,6 @@
|
|||
#define BUFFERING_TARGET(spike,packet_size,max_buf) \
|
||||
SPA_CLAMP((spike)*3/2, (packet_size), (max_buf) - 2*(packet_size))
|
||||
|
||||
/**
|
||||
* Rate controller.
|
||||
*
|
||||
* It's here in a form, where it operates on the running average
|
||||
* so it's compatible with the level spike determination, and
|
||||
* clamping the rate to a range is easy. The impulse response
|
||||
* is similar to spa_dll, and step response does not have sign changes.
|
||||
*
|
||||
* The controller iterates as
|
||||
*
|
||||
* avg(j+1) = (1 - beta) avg(j) + beta level(j)
|
||||
* corr(j+1) = corr(j) + a [avg(j+1) - avg(j)] / duration
|
||||
* + b [avg(j) - target] / duration
|
||||
*
|
||||
* with beta = duration/avg_period < 0.5 is the moving average parameter,
|
||||
* and a = beta/3 + ..., b = beta^2/27 + ....
|
||||
*
|
||||
* This choice results to c(j) being low-pass filtered, and buffer level(j)
|
||||
* converging towards target with stable damped evolution with eigenvalues
|
||||
* real and close to each other around (1 - beta)^(1/3).
|
||||
*
|
||||
* Derivation:
|
||||
*
|
||||
* The deviation from the buffer level target evolves as
|
||||
*
|
||||
* delta(j) = level(j) - target
|
||||
* delta(j+1) = delta(j) + r(j) - c(j+1)
|
||||
*
|
||||
* where r is samples received in one duration, and c corrected rate
|
||||
* (samples per duration).
|
||||
*
|
||||
* The rate correction is in general determined by linear filter f
|
||||
*
|
||||
* c(j+1) = c(j) + \sum_{k=0}^\infty delta(j - k) f(k)
|
||||
*
|
||||
* If \sum_k f(k) is not zero, the only fixed point is c=r, delta=0,
|
||||
* so this structure (if the filter is stable) rate matches and
|
||||
* drives buffer level to target.
|
||||
*
|
||||
* The z-transform then is
|
||||
*
|
||||
* delta(z) = G(z) r(z)
|
||||
* c(z) = F(z) delta(z)
|
||||
* G(z) = (z - 1) / [(z - 1)^2 + z f(z)]
|
||||
* F(z) = f(z) / (z - 1)
|
||||
*
|
||||
* We now want: poles of G(z) must be in |z|<1 for stability, F(z)
|
||||
* should damp high frequencies, and f(z) is causal.
|
||||
*
|
||||
* To satisfy the conditions, take
|
||||
*
|
||||
* (z - 1)^2 + z f(z) = p(z) / q(z)
|
||||
*
|
||||
* where p(z) is polynomial with leading term z^n with wanted root
|
||||
* structure, and q(z) is any polynomial with leading term z^{n-2}.
|
||||
* This guarantees f(z) is causal, and G(z) = (z-1) q(z) / p(z).
|
||||
* We can choose p(z) and q(z) to improve low-pass properties of F(z).
|
||||
*
|
||||
* Simplest choice is p(z)=(z-x)^2 and q(z)=1, but that gives flat
|
||||
* high frequency response in F(z). Better choice is p(z) = (z-u)*(z-v)*(z-w)
|
||||
* and q(z) = z - r. To make F(z) better lowpass, one can cancel
|
||||
* a resulting 1/z pole in F(z) by setting r=u*v*w. Then,
|
||||
*
|
||||
* G(z) = (z - u*v*w)*(z - 1) / [(z - u)*(z - v)*(z - w)]
|
||||
* F(z) = (a z + b - a) / (z - 1) * H(z)
|
||||
* H(z) = beta / (z - 1 + beta)
|
||||
* beta = 1 - u*v*w
|
||||
* a = [(1-u) + (1-v) + (1-w) - beta] / beta
|
||||
* b = (1-u)*(1-v)*(1-w) / beta
|
||||
*
|
||||
* which corresponds to iteration for c(j):
|
||||
*
|
||||
* avg(j+1) = (1 - beta) avg(j) + beta delta(j)
|
||||
* c(j+1) = c(j) + a [avg(j+1) - avg(j)] + b avg(j)
|
||||
*
|
||||
* So the controller operates on the running average,
|
||||
* which gives the low-pass property for c(j).
|
||||
*
|
||||
* The simplest filter is obtained by putting the poles at
|
||||
* u=v=w=(1-beta)**(1/3). Since beta << 1, computing the root
|
||||
* can be avoided by expanding in series.
|
||||
*
|
||||
* Overshoot in impulse response could be reduced by moving one of the
|
||||
* poles closer to z=1, but this increases the step response time.
|
||||
*/
|
||||
struct spa_bt_rate_control
|
||||
{
|
||||
double avg;
|
||||
double corr;
|
||||
};
|
||||
|
||||
static void spa_bt_rate_control_init(struct spa_bt_rate_control *this, double level)
|
||||
{
|
||||
this->avg = level;
|
||||
this->corr = 1.0;
|
||||
}
|
||||
|
||||
static double spa_bt_rate_control_update(struct spa_bt_rate_control *this, double level,
|
||||
double target, double duration, double period)
|
||||
{
|
||||
/*
|
||||
* u = (1 - beta)^(1/3)
|
||||
* x = a / beta
|
||||
* y = b / beta
|
||||
* a = (2 + u) * (1 - u)^2 / beta
|
||||
* b = (1 - u)^3 / beta
|
||||
* beta -> 0
|
||||
*/
|
||||
const double beta = SPA_CLAMP(duration / period, 0, 0.5);
|
||||
const double x = 1.0/3;
|
||||
const double y = beta/27;
|
||||
double avg;
|
||||
|
||||
avg = beta * level + (1 - beta) * this->avg;
|
||||
this->corr += x * (avg - this->avg) / period
|
||||
+ y * (this->avg - target) / period;
|
||||
this->avg = avg;
|
||||
|
||||
this->corr = SPA_CLAMP(this->corr,
|
||||
1 - BUFFERING_RATE_DIFF_MAX,
|
||||
1 + BUFFERING_RATE_DIFF_MAX);
|
||||
|
||||
return this->corr;
|
||||
}
|
||||
|
||||
|
||||
/** Windowed min/max */
|
||||
struct spa_bt_ptp
|
||||
|
|
@ -463,7 +341,8 @@ static void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint
|
|||
}
|
||||
|
||||
this->corr = spa_bt_rate_control_update(&this->ctl,
|
||||
level, target, this->prev_consumed, avg_period);
|
||||
level, target, this->prev_consumed, avg_period,
|
||||
BUFFERING_RATE_DIFF_MAX);
|
||||
|
||||
spa_bt_decode_buffer_get_read(this, &avail);
|
||||
|
||||
|
|
|
|||
133
spa/plugins/bluez5/rate-control.h
Normal file
133
spa/plugins/bluez5/rate-control.h
Normal file
|
|
@ -0,0 +1,133 @@
|
|||
/* Spa Bluez5 rate control */
|
||||
/* SPDX-FileCopyrightText: Copyright © 2022 Pauli Virtanen */
|
||||
/* SPDX-License-Identifier: MIT */
|
||||
|
||||
#ifndef SPA_BLUEZ5_RATE_CONTROL_H
|
||||
#define SPA_BLUEZ5_RATE_CONTROL_H
|
||||
|
||||
#include <spa/utils/defs.h>
|
||||
|
||||
/**
|
||||
* Rate controller.
|
||||
*
|
||||
* It's here in a form, where it operates on the running average
|
||||
* so it's compatible with the level spike determination, and
|
||||
* clamping the rate to a range is easy. The impulse response
|
||||
* is similar to spa_dll, and step response does not have sign changes.
|
||||
*
|
||||
* The controller iterates as
|
||||
*
|
||||
* avg(j+1) = (1 - beta) avg(j) + beta level(j)
|
||||
* corr(j+1) = corr(j) + a [avg(j+1) - avg(j)] / duration
|
||||
* + b [avg(j) - target] / duration
|
||||
*
|
||||
* with beta = duration/avg_period < 0.5 is the moving average parameter,
|
||||
* and a = beta/3 + ..., b = beta^2/27 + ....
|
||||
*
|
||||
* This choice results to c(j) being low-pass filtered, and buffer level(j)
|
||||
* converging towards target with stable damped evolution with eigenvalues
|
||||
* real and close to each other around (1 - beta)^(1/3).
|
||||
*
|
||||
* Derivation:
|
||||
*
|
||||
* The deviation from the buffer level target evolves as
|
||||
*
|
||||
* delta(j) = level(j) - target
|
||||
* delta(j+1) = delta(j) + r(j) - c(j+1)
|
||||
*
|
||||
* where r is samples received in one duration, and c corrected rate
|
||||
* (samples per duration).
|
||||
*
|
||||
* The rate correction is in general determined by linear filter f
|
||||
*
|
||||
* c(j+1) = c(j) + \sum_{k=0}^\infty delta(j - k) f(k)
|
||||
*
|
||||
* If \sum_k f(k) is not zero, the only fixed point is c=r, delta=0,
|
||||
* so this structure (if the filter is stable) rate matches and
|
||||
* drives buffer level to target.
|
||||
*
|
||||
* The z-transform then is
|
||||
*
|
||||
* delta(z) = G(z) r(z)
|
||||
* c(z) = F(z) delta(z)
|
||||
* G(z) = (z - 1) / [(z - 1)^2 + z f(z)]
|
||||
* F(z) = f(z) / (z - 1)
|
||||
*
|
||||
* We now want: poles of G(z) must be in |z|<1 for stability, F(z)
|
||||
* should damp high frequencies, and f(z) is causal.
|
||||
*
|
||||
* To satisfy the conditions, take
|
||||
*
|
||||
* (z - 1)^2 + z f(z) = p(z) / q(z)
|
||||
*
|
||||
* where p(z) is polynomial with leading term z^n with wanted root
|
||||
* structure, and q(z) is any polynomial with leading term z^{n-2}.
|
||||
* This guarantees f(z) is causal, and G(z) = (z-1) q(z) / p(z).
|
||||
* We can choose p(z) and q(z) to improve low-pass properties of F(z).
|
||||
*
|
||||
* Simplest choice is p(z)=(z-x)^2 and q(z)=1, but that gives flat
|
||||
* high frequency response in F(z). Better choice is p(z) = (z-u)*(z-v)*(z-w)
|
||||
* and q(z) = z - r. To make F(z) better lowpass, one can cancel
|
||||
* a resulting 1/z pole in F(z) by setting r=u*v*w. Then,
|
||||
*
|
||||
* G(z) = (z - u*v*w)*(z - 1) / [(z - u)*(z - v)*(z - w)]
|
||||
* F(z) = (a z + b - a) / (z - 1) * H(z)
|
||||
* H(z) = beta / (z - 1 + beta)
|
||||
* beta = 1 - u*v*w
|
||||
* a = [(1-u) + (1-v) + (1-w) - beta] / beta
|
||||
* b = (1-u)*(1-v)*(1-w) / beta
|
||||
*
|
||||
* which corresponds to iteration for c(j):
|
||||
*
|
||||
* avg(j+1) = (1 - beta) avg(j) + beta delta(j)
|
||||
* c(j+1) = c(j) + a [avg(j+1) - avg(j)] + b avg(j)
|
||||
*
|
||||
* So the controller operates on the running average,
|
||||
* which gives the low-pass property for c(j).
|
||||
*
|
||||
* The simplest filter is obtained by putting the poles at
|
||||
* u=v=w=(1-beta)**(1/3). Since beta << 1, computing the root
|
||||
* can be avoided by expanding in series.
|
||||
*
|
||||
* Overshoot in impulse response could be reduced by moving one of the
|
||||
* poles closer to z=1, but this increases the step response time.
|
||||
*/
|
||||
struct spa_bt_rate_control
|
||||
{
|
||||
double avg;
|
||||
double corr;
|
||||
};
|
||||
|
||||
static void spa_bt_rate_control_init(struct spa_bt_rate_control *this, double level)
|
||||
{
|
||||
this->avg = level;
|
||||
this->corr = 1.0;
|
||||
}
|
||||
|
||||
static double spa_bt_rate_control_update(struct spa_bt_rate_control *this, double level,
|
||||
double target, double duration, double period, double rate_diff_max)
|
||||
{
|
||||
/*
|
||||
* u = (1 - beta)^(1/3)
|
||||
* x = a / beta
|
||||
* y = b / beta
|
||||
* a = (2 + u) * (1 - u)^2 / beta
|
||||
* b = (1 - u)^3 / beta
|
||||
* beta -> 0
|
||||
*/
|
||||
const double beta = SPA_CLAMP(duration / period, 0, 0.5);
|
||||
const double x = 1.0/3;
|
||||
const double y = beta/27;
|
||||
double avg;
|
||||
|
||||
avg = beta * level + (1 - beta) * this->avg;
|
||||
this->corr += x * (avg - this->avg) / period
|
||||
+ y * (this->avg - target) / period;
|
||||
this->avg = avg;
|
||||
|
||||
this->corr = SPA_CLAMP(this->corr, 1 - rate_diff_max, 1 + rate_diff_max);
|
||||
|
||||
return this->corr;
|
||||
}
|
||||
|
||||
#endif
|
||||
Loading…
Add table
Add a link
Reference in a new issue