mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-11-02 09:01:50 -05:00
mem: align memory to requested alignment
Improve the allocators to always align the buffer memory to the requested alignment Use aligned read and writes for sse functions and check alignment, optionally falling back to unaligned path. Add more tests and benchmark cases Check and warn for misaligned memory in plugins.
This commit is contained in:
parent
dd66469570
commit
13bf70a8dd
19 changed files with 736 additions and 516 deletions
|
|
@ -30,142 +30,148 @@
|
|||
#include <emmintrin.h>
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_1_sse2(void *data, int n_dst, void *dst[n_dst], const void *src, int n_samples)
|
||||
conv_s16_to_f32d_1_sse2(void *data, void *dst[], const void *src, int n_channels, int n_samples)
|
||||
{
|
||||
const int16_t *s = src;
|
||||
float **d = (float **) dst;
|
||||
float *d0 = d[0];
|
||||
int n = 0, unrolled;
|
||||
int n, unrolled;
|
||||
__m128i in;
|
||||
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (SPA_IS_ALIGNED(d0, 16))
|
||||
unrolled = n_samples / 4;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(; unrolled--; n += 4) {
|
||||
in = _mm_insert_epi16(in, s[0*n_dst], 1);
|
||||
in = _mm_insert_epi16(in, s[1*n_dst], 3);
|
||||
in = _mm_insert_epi16(in, s[2*n_dst], 5);
|
||||
in = _mm_insert_epi16(in, s[3*n_dst], 7);
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in = _mm_insert_epi16(in, s[0*n_channels], 1);
|
||||
in = _mm_insert_epi16(in, s[1*n_channels], 3);
|
||||
in = _mm_insert_epi16(in, s[2*n_channels], 5);
|
||||
in = _mm_insert_epi16(in, s[3*n_channels], 7);
|
||||
in = _mm_srai_epi32(in, 16);
|
||||
out = _mm_cvtepi32_ps(in);
|
||||
out = _mm_mul_ps(out, factor);
|
||||
_mm_storeu_ps(&d0[n], out);
|
||||
s += 4*n_dst;
|
||||
_mm_store_ps(&d0[n], out);
|
||||
s += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
out = _mm_cvtsi32_ss(out, s[0]);
|
||||
out = _mm_mul_ss(out, factor);
|
||||
_mm_store_ss(&d0[n], out);
|
||||
s += n_dst;
|
||||
s += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_2_sse2(void *data, int n_dst, void *dst[n_dst], const void *src, int n_samples)
|
||||
conv_s16_to_f32d_2_sse2(void *data, void *dst[], const void *src, int n_channels, int n_samples)
|
||||
{
|
||||
const int16_t *s = src;
|
||||
float **d = (float **) dst;
|
||||
float *d0 = d[0], *d1 = d[1];
|
||||
int n = 0, unrolled;
|
||||
int n, unrolled;
|
||||
__m128i in, t[2];
|
||||
__m128 out[2], factor = _mm_set1_ps(1.0f / S16_SCALE);
|
||||
|
||||
if (n_dst == 2) {
|
||||
if (n_channels == 2 &&
|
||||
SPA_IS_ALIGNED(s, 16) &&
|
||||
SPA_IS_ALIGNED(d0, 16) &&
|
||||
SPA_IS_ALIGNED(d1, 16))
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(; unrolled--; n += 4) {
|
||||
in = _mm_loadu_si128((__m128i*)s);
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in = _mm_load_si128((__m128i*)s);
|
||||
|
||||
t[0] = _mm_slli_epi32(in, 16);
|
||||
t[0] = _mm_srai_epi32(t[0], 16);
|
||||
t[1] = _mm_srai_epi32(in, 16);
|
||||
t[0] = _mm_slli_epi32(in, 16);
|
||||
t[0] = _mm_srai_epi32(t[0], 16);
|
||||
t[1] = _mm_srai_epi32(in, 16);
|
||||
|
||||
out[0] = _mm_cvtepi32_ps(t[0]);
|
||||
out[0] = _mm_mul_ps(out[0], factor);
|
||||
out[1] = _mm_cvtepi32_ps(t[1]);
|
||||
out[1] = _mm_mul_ps(out[1], factor);
|
||||
out[0] = _mm_cvtepi32_ps(t[0]);
|
||||
out[0] = _mm_mul_ps(out[0], factor);
|
||||
out[1] = _mm_cvtepi32_ps(t[1]);
|
||||
out[1] = _mm_mul_ps(out[1], factor);
|
||||
|
||||
_mm_storeu_ps(&d0[n], out[0]);
|
||||
_mm_storeu_ps(&d1[n], out[1]);
|
||||
_mm_store_ps(&d0[n], out[0]);
|
||||
_mm_store_ps(&d1[n], out[1]);
|
||||
|
||||
s += 4*n_dst;
|
||||
}
|
||||
s += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
out[0] = _mm_cvtsi32_ss(out[0], s[0]);
|
||||
out[0] = _mm_mul_ss(out[0], factor);
|
||||
out[1] = _mm_cvtsi32_ss(out[1], s[1]);
|
||||
out[1] = _mm_mul_ss(out[1], factor);
|
||||
_mm_store_ss(&d0[n], out[0]);
|
||||
_mm_store_ss(&d1[n], out[1]);
|
||||
s += n_dst;
|
||||
s += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s16_to_f32d_sse2(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_samples)
|
||||
conv_s16_to_f32d_sse2(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const int16_t *s = src[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i + 1 < n_dst; i += 2)
|
||||
conv_s16_to_f32d_2_sse2(data, n_dst, &dst[i], &s[i], n_samples);
|
||||
for(; i < n_dst; i++)
|
||||
conv_s16_to_f32d_1_sse2(data, n_dst, &dst[i], &s[i], n_samples);
|
||||
for(; i + 1 < n_channels; i += 2)
|
||||
conv_s16_to_f32d_2_sse2(data, &dst[i], &s[i], n_channels, n_samples);
|
||||
for(; i < n_channels; i++)
|
||||
conv_s16_to_f32d_1_sse2(data, &dst[i], &s[i], n_channels, n_samples);
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s24_to_f32d_1_sse2(void *data, int n_dst, void *dst[n_dst], const void *src, int n_samples)
|
||||
conv_s24_to_f32d_1_sse2(void *data, void *dst[], const void *src, int n_channels, int n_samples)
|
||||
{
|
||||
const uint8_t *s = src;
|
||||
float **d = (float **) dst;
|
||||
float *d0 = d[0];
|
||||
int n = 0, unrolled;
|
||||
int n, unrolled;
|
||||
__m128i in;
|
||||
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (n_samples == 0) {
|
||||
n_samples += 4;
|
||||
unrolled--;
|
||||
if (SPA_IS_ALIGNED(d0, 16) && n_samples > 4) {
|
||||
unrolled = n_samples / 4;
|
||||
if ((n_samples & 3) == 0)
|
||||
unrolled--;
|
||||
}
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(; unrolled--; n += 4) {
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in = _mm_setr_epi32(
|
||||
*((uint32_t*)&s[0 * n_dst]),
|
||||
*((uint32_t*)&s[3 * n_dst]),
|
||||
*((uint32_t*)&s[6 * n_dst]),
|
||||
*((uint32_t*)&s[9 * n_dst]));
|
||||
*((uint32_t*)&s[0 * n_channels]),
|
||||
*((uint32_t*)&s[3 * n_channels]),
|
||||
*((uint32_t*)&s[6 * n_channels]),
|
||||
*((uint32_t*)&s[9 * n_channels]));
|
||||
in = _mm_slli_epi32(in, 8);
|
||||
in = _mm_srai_epi32(in, 8);
|
||||
out = _mm_cvtepi32_ps(in);
|
||||
out = _mm_mul_ps(out, factor);
|
||||
_mm_storeu_ps(&d0[n], out);
|
||||
s += 12 * n_dst;
|
||||
_mm_store_ps(&d0[n], out);
|
||||
s += 12 * n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
out = _mm_cvtsi32_ss(out, read_s24(s));
|
||||
out = _mm_mul_ss(out, factor);
|
||||
_mm_store_ss(&d0[n], out);
|
||||
s += 3 * n_dst;
|
||||
s += 3 * n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_s24_to_f32d_sse2(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_samples)
|
||||
conv_s24_to_f32d_sse2(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const int8_t *s = src[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i < n_dst; i++)
|
||||
conv_s24_to_f32d_1_sse2(data, n_dst, &dst[i], &s[3*i], n_samples);
|
||||
for(; i < n_channels; i++)
|
||||
conv_s24_to_f32d_1_sse2(data, &dst[i], &s[3*i], n_channels, n_samples);
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_1_sse2(void *data, void *dst, int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s32_1_sse2(void *data, void *dst, const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
const float *s0 = s[0];
|
||||
|
|
@ -176,11 +182,13 @@ conv_f32d_to_s32_1_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (SPA_IS_ALIGNED(s0, 16))
|
||||
unrolled = n_samples / 4;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s0[n]), int_max);
|
||||
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
|
||||
out[0] = _mm_slli_epi32(_mm_cvtps_epi32(in[0]), 8);
|
||||
|
|
@ -188,23 +196,23 @@ conv_f32d_to_s32_1_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
||||
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
||||
|
||||
d[0*n_src] = _mm_cvtsi128_si32(out[0]);
|
||||
d[1*n_src] = _mm_cvtsi128_si32(out[1]);
|
||||
d[2*n_src] = _mm_cvtsi128_si32(out[2]);
|
||||
d[3*n_src] = _mm_cvtsi128_si32(out[3]);
|
||||
d += 4*n_src;
|
||||
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
||||
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
||||
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
||||
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
||||
d += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
in[0] = _mm_load_ss(&s0[n]);
|
||||
in[0] = _mm_mul_ss(in[0], int_max);
|
||||
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
||||
*d = _mm_cvtss_si32(in[0]) << 8;
|
||||
d += n_src;
|
||||
d += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_2_sse2(void *data, void *dst, int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s32_2_sse2(void *data, void *dst, const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
const float *s0 = s[0], *s1 = s[1];
|
||||
|
|
@ -215,12 +223,15 @@ conv_f32d_to_s32_2_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (SPA_IS_ALIGNED(s0, 16) &&
|
||||
SPA_IS_ALIGNED(s1, 16))
|
||||
unrolled = n_samples / 4;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s1[n]), int_max);
|
||||
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
||||
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
in[1] = _mm_min_ps(int_max, _mm_max_ps(in[1], int_min));
|
||||
|
|
@ -233,13 +244,13 @@ conv_f32d_to_s32_2_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
t[2] = _mm_unpackhi_epi32(out[0], out[1]);
|
||||
t[3] = _mm_shuffle_epi32(t[2], _MM_SHUFFLE(0, 0, 2, 2));
|
||||
|
||||
_mm_storel_epi64((__m128i*)(d + 0*n_src), t[0]);
|
||||
_mm_storel_epi64((__m128i*)(d + 1*n_src), t[1]);
|
||||
_mm_storel_epi64((__m128i*)(d + 2*n_src), t[2]);
|
||||
_mm_storel_epi64((__m128i*)(d + 3*n_src), t[3]);
|
||||
d += 4*n_src;
|
||||
_mm_storel_epi64((__m128i*)(d + 0*n_channels), t[0]);
|
||||
_mm_storel_epi64((__m128i*)(d + 1*n_channels), t[1]);
|
||||
_mm_storel_epi64((__m128i*)(d + 2*n_channels), t[2]);
|
||||
_mm_storel_epi64((__m128i*)(d + 3*n_channels), t[3]);
|
||||
d += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
in[0] = _mm_load_ss(&s0[n]);
|
||||
in[1] = _mm_load_ss(&s1[n]);
|
||||
|
||||
|
|
@ -249,12 +260,12 @@ conv_f32d_to_s32_2_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
out[0] = _mm_slli_epi32(_mm_cvtps_epi32(in[0]), 8);
|
||||
_mm_storel_epi64((__m128i*)d, out[0]);
|
||||
d += n_src;
|
||||
d += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_4_sse2(void *data, void *dst, int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s32_4_sse2(void *data, void *dst, const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
const float *s0 = s[0], *s1 = s[1], *s2 = s[2], *s3 = s[3];
|
||||
|
|
@ -265,14 +276,19 @@ conv_f32d_to_s32_4_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
__m128 int_max = _mm_set1_ps(S24_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (SPA_IS_ALIGNED(s0, 16) &&
|
||||
SPA_IS_ALIGNED(s1, 16) &&
|
||||
SPA_IS_ALIGNED(s2, 16) &&
|
||||
SPA_IS_ALIGNED(s3, 16))
|
||||
unrolled = n_samples / 4;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s1[n]), int_max);
|
||||
in[2] = _mm_mul_ps(_mm_loadu_ps(&s2[n]), int_max);
|
||||
in[3] = _mm_mul_ps(_mm_loadu_ps(&s3[n]), int_max);
|
||||
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
||||
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_max);
|
||||
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_max);
|
||||
|
||||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
in[1] = _mm_min_ps(int_max, _mm_max_ps(in[1], int_min));
|
||||
|
|
@ -294,13 +310,13 @@ conv_f32d_to_s32_4_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
out[2] = _mm_unpacklo_epi64(t[2], t[3]);
|
||||
out[3] = _mm_unpackhi_epi64(t[2], t[3]);
|
||||
|
||||
_mm_storeu_si128((__m128i*)(d + 0*n_src), out[0]);
|
||||
_mm_storeu_si128((__m128i*)(d + 1*n_src), out[1]);
|
||||
_mm_storeu_si128((__m128i*)(d + 2*n_src), out[2]);
|
||||
_mm_storeu_si128((__m128i*)(d + 3*n_src), out[3]);
|
||||
d += 4*n_src;
|
||||
_mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]);
|
||||
_mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]);
|
||||
_mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]);
|
||||
_mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]);
|
||||
d += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
in[0] = _mm_load_ss(&s0[n]);
|
||||
in[1] = _mm_load_ss(&s1[n]);
|
||||
in[2] = _mm_load_ss(&s2[n]);
|
||||
|
|
@ -314,26 +330,26 @@ conv_f32d_to_s32_4_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
in[0] = _mm_min_ps(int_max, _mm_max_ps(in[0], int_min));
|
||||
out[0] = _mm_slli_epi32(_mm_cvtps_epi32(in[0]), 8);
|
||||
_mm_storeu_si128((__m128i*)d, out[0]);
|
||||
d += n_src;
|
||||
d += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s32_sse2(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s32_sse2(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
int32_t *d = dst[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i + 3 < n_src; i += 4)
|
||||
conv_f32d_to_s32_4_sse2(data, &d[i], n_src, &src[i], n_samples);
|
||||
for(; i + 1 < n_src; i += 2)
|
||||
conv_f32d_to_s32_2_sse2(data, &d[i], n_src, &src[i], n_samples);
|
||||
for(; i < n_src; i++)
|
||||
conv_f32d_to_s32_1_sse2(data, &d[i], n_src, &src[i], n_samples);
|
||||
for(; i + 3 < n_channels; i += 4)
|
||||
conv_f32d_to_s32_4_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
||||
for(; i + 1 < n_channels; i += 2)
|
||||
conv_f32d_to_s32_2_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
||||
for(; i < n_channels; i++)
|
||||
conv_f32d_to_s32_1_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s16_1_sse2(void *data, void *dst, int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s16_1_sse2(void *data, void *dst, const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
const float *s0 = s[0];
|
||||
|
|
@ -344,52 +360,59 @@ conv_f32d_to_s16_1_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
unrolled = n_samples / 8;
|
||||
n_samples = n_samples & 7;
|
||||
if (SPA_IS_ALIGNED(s0, 16))
|
||||
unrolled = n_samples / 8;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(n = 0; unrolled--; n += 8) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s0[n+4]), int_max);
|
||||
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_max);
|
||||
out[0] = _mm_cvtps_epi32(in[0]);
|
||||
out[1] = _mm_cvtps_epi32(in[1]);
|
||||
out[0] = _mm_packs_epi32(out[0], out[1]);
|
||||
|
||||
d[0*n_src] = _mm_extract_epi16(out[0], 0);
|
||||
d[1*n_src] = _mm_extract_epi16(out[0], 1);
|
||||
d[2*n_src] = _mm_extract_epi16(out[0], 2);
|
||||
d[3*n_src] = _mm_extract_epi16(out[0], 3);
|
||||
d[4*n_src] = _mm_extract_epi16(out[0], 4);
|
||||
d[5*n_src] = _mm_extract_epi16(out[0], 5);
|
||||
d[6*n_src] = _mm_extract_epi16(out[0], 6);
|
||||
d[7*n_src] = _mm_extract_epi16(out[0], 7);
|
||||
d += 8*n_src;
|
||||
d[0*n_channels] = _mm_extract_epi16(out[0], 0);
|
||||
d[1*n_channels] = _mm_extract_epi16(out[0], 1);
|
||||
d[2*n_channels] = _mm_extract_epi16(out[0], 2);
|
||||
d[3*n_channels] = _mm_extract_epi16(out[0], 3);
|
||||
d[4*n_channels] = _mm_extract_epi16(out[0], 4);
|
||||
d[5*n_channels] = _mm_extract_epi16(out[0], 5);
|
||||
d[6*n_channels] = _mm_extract_epi16(out[0], 6);
|
||||
d[7*n_channels] = _mm_extract_epi16(out[0], 7);
|
||||
d += 8*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
fprintf(stderr, "%p %d %d %d\n", s0, n_samples, n, n_channels);
|
||||
spa_assert_not_reached();
|
||||
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
||||
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
||||
*d = _mm_cvtss_si32(in[0]);
|
||||
d += n_src;
|
||||
d += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s16_2_sse2(void *data, void *dst, int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s16_2_sse2(void *data, void *dst, const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
const float **s = (const float **) src;
|
||||
const float *s0 = s[0], *s1 = s[1];
|
||||
int16_t *d = dst;
|
||||
int n = 0, unrolled;
|
||||
int n, unrolled;
|
||||
__m128 in[2];
|
||||
__m128i out[4], t[2];
|
||||
__m128 int_max = _mm_set1_ps(S16_MAX_F);
|
||||
__m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max);
|
||||
|
||||
unrolled = n_samples / 4;
|
||||
n_samples = n_samples & 3;
|
||||
if (SPA_IS_ALIGNED(s0, 16) &&
|
||||
SPA_IS_ALIGNED(s1, 16))
|
||||
unrolled = n_samples / 4;
|
||||
else
|
||||
unrolled = 0;
|
||||
|
||||
for(; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_loadu_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_loadu_ps(&s1[n]), int_max);
|
||||
for(n = 0; unrolled--; n += 4) {
|
||||
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_max);
|
||||
|
||||
t[0] = _mm_cvtps_epi32(in[0]);
|
||||
t[1] = _mm_cvtps_epi32(in[1]);
|
||||
|
|
@ -402,31 +425,33 @@ conv_f32d_to_s16_2_sse2(void *data, void *dst, int n_src, const void *src[n_src]
|
|||
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
||||
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
||||
|
||||
*((uint32_t*)(d + 0*n_src)) = _mm_cvtsi128_si32(out[0]);
|
||||
*((uint32_t*)(d + 1*n_src)) = _mm_cvtsi128_si32(out[1]);
|
||||
*((uint32_t*)(d + 2*n_src)) = _mm_cvtsi128_si32(out[2]);
|
||||
*((uint32_t*)(d + 3*n_src)) = _mm_cvtsi128_si32(out[3]);
|
||||
d += 4*n_src;
|
||||
*((int32_t*)(d + 0*n_channels)) = _mm_cvtsi128_si32(out[0]);
|
||||
*((int32_t*)(d + 1*n_channels)) = _mm_cvtsi128_si32(out[1]);
|
||||
*((int32_t*)(d + 2*n_channels)) = _mm_cvtsi128_si32(out[2]);
|
||||
*((int32_t*)(d + 3*n_channels)) = _mm_cvtsi128_si32(out[3]);
|
||||
d += 4*n_channels;
|
||||
}
|
||||
for(; n_samples--; n++) {
|
||||
for(; n < n_samples; n++) {
|
||||
fprintf(stderr, "%p %p %d %d %d\n", s0, s1, n_samples, n, n_channels);
|
||||
spa_assert_not_reached();
|
||||
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_max);
|
||||
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_max);
|
||||
in[0] = _mm_min_ss(int_max, _mm_max_ss(in[0], int_min));
|
||||
in[1] = _mm_min_ss(int_max, _mm_max_ss(in[1], int_min));
|
||||
d[0] = _mm_cvtss_si32(in[0]);
|
||||
d[1] = _mm_cvtss_si32(in[1]);
|
||||
d += n_src;
|
||||
d += n_channels;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
conv_f32d_to_s16_sse2(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], int n_samples)
|
||||
conv_f32d_to_s16_sse2(void *data, void *dst[], const void *src[], int n_channels, int n_samples)
|
||||
{
|
||||
int16_t *d = dst[0];
|
||||
int i = 0;
|
||||
|
||||
for(; i + 1 < n_src; i += 2)
|
||||
conv_f32d_to_s16_2_sse2(data, &d[i], n_src, &src[i], n_samples);
|
||||
for(; i < n_src; i++)
|
||||
conv_f32d_to_s16_1_sse2(data, &d[i], n_src, &src[i], n_samples);
|
||||
for(; i + 1 < n_channels; i += 2)
|
||||
conv_f32d_to_s16_2_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
||||
for(; i < n_channels; i++)
|
||||
conv_f32d_to_s16_1_sse2(data, &d[i], &src[i], n_channels, n_samples);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue