examples: add DSP sink example

Add example of ALLOC_BUFFERS on the input port.

See #4918
This commit is contained in:
Wim Taymans 2025-10-02 16:25:11 +02:00
parent 4161fa3071
commit 0b0226322f
2 changed files with 226 additions and 0 deletions

View file

@ -0,0 +1,225 @@
/* PipeWire */
/* SPDX-FileCopyrightText: Copyright © 2025 Wim Taymans */
/* SPDX-License-Identifier: MIT */
/*
[title]
Audio sink using \ref pw_filter "pw_filter"
[title]
*/
#include "config.h"
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <pipewire/pipewire.h>
#include <pipewire/filter.h>
/* define to make this filter allocate buffer memory */
#define ALLOC_BUFFERS
struct data;
struct port {
struct data *data;
};
struct data {
struct pw_main_loop *loop;
struct pw_filter *filter;
struct port *in_port;
bool move;
uint32_t quantum_limit;
};
/* our data processing function is in general:
*
* struct pw_buffer *b;
* out = pw_filter_dequeue_buffer(filter, in_port);
*
* .. consume data in the buffer ...
*
* pw_filter_queue_buffer(filter, in_port, out);
*
* For DSP ports, there is a shortcut to directly dequeue, get
* the data and requeue the buffer with pw_filter_get_dsp_buffer().
*/
static void on_process(void *userdata, struct spa_io_position *position)
{
struct data *data = userdata;
float *in, max;
struct port *in_port = data->in_port;
uint32_t i, n_samples = position->clock.duration, peak;
pw_log_trace("do process %d", n_samples);
in = pw_filter_get_dsp_buffer(in_port, n_samples);
if (in == NULL)
return;
/* move cursor up */
if (data->move)
fprintf(stdout, "%c[%dA", 0x1b, 2);
fprintf(stdout, "captured %d samples\n", n_samples);
max = 0.0f;
for (i = 0; i < n_samples; i++)
max = fmaxf(max, fabsf(in[i]));
peak = (uint32_t)SPA_CLAMPF(max * 30, 0.f, 39.f);
fprintf(stdout, "input: |%*s%*s| peak:%f\n", peak+1, "*", 40 - peak, "", max);
data->move = true;
fflush(stdout);
}
#ifdef ALLOC_BUFFERS
/* close the memfd we set on the buffers here */
static void on_remove_buffer(void *_data, void *_port_data, struct pw_buffer *buffer)
{
struct spa_buffer *buf = buffer->buffer;
struct spa_data *d;
d = buf->datas;
pw_log_info("remove buffer %p", buffer);
munmap(d[0].data, d[0].maxsize);
close(d[0].fd);
}
/* we set the PW_STREAM_FLAG_ALLOC_BUFFERS flag when connecting so we need
* to provide buffer memory. */
static void on_add_buffer(void *_data, void *_port_data, struct pw_buffer *buffer)
{
struct data *data = _data;
struct spa_buffer *buf = buffer->buffer;
struct spa_data *d;
pw_log_info("add buffer %p", buffer);
d = buf->datas;
if ((d[0].type & (1<<SPA_DATA_MemFd)) == 0) {
pw_log_error("unsupported data type %08x", d[0].type);
return;
}
/* create the memfd on the buffer, set the type and flags */
d[0].type = SPA_DATA_MemFd;
d[0].flags = SPA_DATA_FLAG_READWRITE | SPA_DATA_FLAG_MAPPABLE;
#ifdef HAVE_MEMFD_CREATE
d[0].fd = memfd_create("audio-dsp-sink-memfd", MFD_CLOEXEC);
#else
d[0].fd = -1;
#endif
if (d[0].fd == -1) {
pw_log_error("can't create memfd: %m");
return;
}
d[0].mapoffset = 0;
d[0].maxsize = data->quantum_limit * sizeof(float);
/* truncate to the right size */
if (ftruncate(d[0].fd, d[0].maxsize) < 0) {
pw_log_error("can't truncate to %d: %m", d[0].maxsize);
return;
}
/* now mmap so we can read it in the process function above */
d[0].data = mmap(NULL, d[0].maxsize, PROT_READ | PROT_WRITE,
MAP_SHARED, d[0].fd, d[0].mapoffset);
if (d[0].data == MAP_FAILED) {
pw_log_error("can't mmap memory: %m");
return;
}
}
#endif
static const struct pw_filter_events filter_events = {
PW_VERSION_FILTER_EVENTS,
.process = on_process,
#ifdef ALLOC_BUFFERS
.add_buffer = on_add_buffer,
.remove_buffer = on_remove_buffer,
#endif
};
static void do_quit(void *userdata, int signal_number)
{
struct data *data = userdata;
pw_main_loop_quit(data->loop);
}
int main(int argc, char *argv[])
{
struct data data = { 0, };
uint32_t flags;
pw_init(&argc, &argv);
data.quantum_limit= 8192;
/* make a main loop. If you already have another main loop, you can add
* the fd of this pipewire mainloop to it. */
data.loop = pw_main_loop_new(NULL);
pw_loop_add_signal(pw_main_loop_get_loop(data.loop), SIGINT, do_quit, &data);
pw_loop_add_signal(pw_main_loop_get_loop(data.loop), SIGTERM, do_quit, &data);
/* Create a simple filter, the simple filter manages the core and remote
* objects for you if you don't need to deal with them.
*
* Pass your events and a user_data pointer as the last arguments. This
* will inform you about the filter state. The most important event
* you need to listen to is the process event where you need to process
* the data.
*/
data.filter = pw_filter_new_simple(
pw_main_loop_get_loop(data.loop),
"audio-dsp-sink",
pw_properties_new(
PW_KEY_MEDIA_TYPE, "Audio",
PW_KEY_MEDIA_CATEGORY, "Sink",
PW_KEY_MEDIA_ROLE, "DSP",
PW_KEY_MEDIA_CLASS, "Stream/Input/Audio",
PW_KEY_NODE_AUTOCONNECT, "true",
NULL),
&filter_events,
&data);
flags = PW_FILTER_PORT_FLAG_MAP_BUFFERS;
#ifdef ALLOC_BUFFERS
flags |= PW_FILTER_PORT_FLAG_ALLOC_BUFFERS;
#endif
/* make an audio DSP output port */
data.in_port = pw_filter_add_port(data.filter,
PW_DIRECTION_INPUT,
flags,
sizeof(struct port),
pw_properties_new(
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
PW_KEY_PORT_NAME, "input",
NULL),
NULL, 0);
/* Now connect this filter. We ask that our process function is
* called in a realtime thread. */
if (pw_filter_connect(data.filter,
PW_FILTER_FLAG_RT_PROCESS,
NULL, 0) < 0) {
fprintf(stderr, "can't connect\n");
return -1;
}
/* and wait while we let things run */
pw_main_loop_run(data.loop);
pw_filter_destroy(data.filter);
pw_main_loop_destroy(data.loop);
pw_deinit();
return 0;
}

View file

@ -5,6 +5,7 @@ examples = [
'audio-src-ring2',
'audio-dsp-src',
'audio-dsp-filter',
'audio-dsp-sink',
'audio-capture',
'video-play',
'video-src',