mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
filter-graph: Use biquad from audioconvert
Remove the biquad-implementation in filter-graph and use the one in audioconvert instead.
This commit is contained in:
parent
e9092d7d2f
commit
0570d1dd00
2 changed files with 4 additions and 377 deletions
|
|
@ -1,374 +0,0 @@
|
|||
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2010 Google Inc. All rights reserved.
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE.WEBKIT file.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include "biquad.h"
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
/* S = 1 in Q */
|
||||
#define BIQUAD_SHELVING_DEFAULT_Q 0.707106781186548
|
||||
|
||||
static void set_coefficient(struct biquad *bq, double b0, double b1, double b2,
|
||||
double a0, double a1, double a2)
|
||||
{
|
||||
double a0_inv = 1 / a0;
|
||||
bq->b0 = (float)(b0 * a0_inv);
|
||||
bq->b1 = (float)(b1 * a0_inv);
|
||||
bq->b2 = (float)(b2 * a0_inv);
|
||||
bq->a1 = (float)(a1 * a0_inv);
|
||||
bq->a2 = (float)(a2 * a0_inv);
|
||||
}
|
||||
|
||||
static void biquad_lowpass(struct biquad *bq, double cutoff, double resonance)
|
||||
{
|
||||
/* Limit cutoff to 0 to 1. */
|
||||
cutoff = fmax(0.0, fmin(cutoff, 1.0));
|
||||
|
||||
if (cutoff == 1 || cutoff == 0) {
|
||||
/* When cutoff is 1, the z-transform is 1.
|
||||
* When cutoff is zero, nothing gets through the filter, so set
|
||||
* coefficients up correctly.
|
||||
*/
|
||||
set_coefficient(bq, cutoff, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Compute biquad coefficients for lowpass filter */
|
||||
resonance = fmax(0.0, resonance); /* can't go negative */
|
||||
double g = pow(10.0, 0.05 * resonance);
|
||||
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
|
||||
|
||||
double theta = M_PI * cutoff;
|
||||
double sn = 0.5 * d * sin(theta);
|
||||
double beta = 0.5 * (1 - sn) / (1 + sn);
|
||||
double gamma = (0.5 + beta) * cos(theta);
|
||||
double alpha = 0.25 * (0.5 + beta - gamma);
|
||||
|
||||
double b0 = 2 * alpha;
|
||||
double b1 = 2 * 2 * alpha;
|
||||
double b2 = 2 * alpha;
|
||||
double a1 = 2 * -gamma;
|
||||
double a2 = 2 * beta;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, 1, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_highpass(struct biquad *bq, double cutoff, double resonance)
|
||||
{
|
||||
/* Limit cutoff to 0 to 1. */
|
||||
cutoff = fmax(0.0, fmin(cutoff, 1.0));
|
||||
|
||||
if (cutoff == 1 || cutoff == 0) {
|
||||
/* When cutoff is one, the z-transform is 0. */
|
||||
/* When cutoff is zero, we need to be careful because the above
|
||||
* gives a quadratic divided by the same quadratic, with poles
|
||||
* and zeros on the unit circle in the same place. When cutoff
|
||||
* is zero, the z-transform is 1.
|
||||
*/
|
||||
set_coefficient(bq, 1 - cutoff, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Compute biquad coefficients for highpass filter */
|
||||
resonance = fmax(0.0, resonance); /* can't go negative */
|
||||
double g = pow(10.0, 0.05 * resonance);
|
||||
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
|
||||
|
||||
double theta = M_PI * cutoff;
|
||||
double sn = 0.5 * d * sin(theta);
|
||||
double beta = 0.5 * (1 - sn) / (1 + sn);
|
||||
double gamma = (0.5 + beta) * cos(theta);
|
||||
double alpha = 0.25 * (0.5 + beta + gamma);
|
||||
|
||||
double b0 = 2 * alpha;
|
||||
double b1 = 2 * -2 * alpha;
|
||||
double b2 = 2 * alpha;
|
||||
double a1 = 2 * -gamma;
|
||||
double a2 = 2 * beta;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, 1, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_bandpass(struct biquad *bq, double frequency, double Q)
|
||||
{
|
||||
/* No negative frequencies allowed. */
|
||||
frequency = fmax(0.0, frequency);
|
||||
|
||||
/* Don't let Q go negative, which causes an unstable filter. */
|
||||
Q = fmax(0.0, Q);
|
||||
|
||||
if (frequency <= 0 || frequency >= 1) {
|
||||
/* When the cutoff is zero, the z-transform approaches 0, if Q
|
||||
* > 0. When both Q and cutoff are zero, the z-transform is
|
||||
* pretty much undefined. What should we do in this case?
|
||||
* For now, just make the filter 0. When the cutoff is 1, the
|
||||
* z-transform also approaches 0.
|
||||
*/
|
||||
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
if (Q <= 0) {
|
||||
/* When Q = 0, the above formulas have problems. If we
|
||||
* look at the z-transform, we can see that the limit
|
||||
* as Q->0 is 1, so set the filter that way.
|
||||
*/
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
|
||||
double b0 = alpha;
|
||||
double b1 = 0;
|
||||
double b2 = -alpha;
|
||||
double a0 = 1 + alpha;
|
||||
double a1 = -2 * k;
|
||||
double a2 = 1 - alpha;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_lowshelf(struct biquad *bq, double frequency, double Q,
|
||||
double db_gain)
|
||||
{
|
||||
/* Clip frequencies to between 0 and 1, inclusive. */
|
||||
frequency = fmax(0.0, fmin(frequency, 1.0));
|
||||
|
||||
double A = pow(10.0, db_gain / 40);
|
||||
|
||||
if (frequency == 1) {
|
||||
/* The z-transform is a constant gain. */
|
||||
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
if (frequency <= 0) {
|
||||
/* When frequency is 0, the z-transform is 1. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Set Q to an equivalent value to S = 1 if not specified */
|
||||
if (Q <= 0)
|
||||
Q = BIQUAD_SHELVING_DEFAULT_Q;
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
double k2 = 2 * sqrt(A) * alpha;
|
||||
double a_plus_one = A + 1;
|
||||
double a_minus_one = A - 1;
|
||||
|
||||
double b0 = A * (a_plus_one - a_minus_one * k + k2);
|
||||
double b1 = 2 * A * (a_minus_one - a_plus_one * k);
|
||||
double b2 = A * (a_plus_one - a_minus_one * k - k2);
|
||||
double a0 = a_plus_one + a_minus_one * k + k2;
|
||||
double a1 = -2 * (a_minus_one + a_plus_one * k);
|
||||
double a2 = a_plus_one + a_minus_one * k - k2;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_highshelf(struct biquad *bq, double frequency, double Q,
|
||||
double db_gain)
|
||||
{
|
||||
/* Clip frequencies to between 0 and 1, inclusive. */
|
||||
frequency = fmax(0.0, fmin(frequency, 1.0));
|
||||
|
||||
double A = pow(10.0, db_gain / 40);
|
||||
|
||||
if (frequency == 1) {
|
||||
/* The z-transform is 1. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
if (frequency <= 0) {
|
||||
/* When frequency = 0, the filter is just a gain, A^2. */
|
||||
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Set Q to an equivalent value to S = 1 if not specified */
|
||||
if (Q <= 0)
|
||||
Q = BIQUAD_SHELVING_DEFAULT_Q;
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
double k2 = 2 * sqrt(A) * alpha;
|
||||
double a_plus_one = A + 1;
|
||||
double a_minus_one = A - 1;
|
||||
|
||||
double b0 = A * (a_plus_one + a_minus_one * k + k2);
|
||||
double b1 = -2 * A * (a_minus_one + a_plus_one * k);
|
||||
double b2 = A * (a_plus_one + a_minus_one * k - k2);
|
||||
double a0 = a_plus_one - a_minus_one * k + k2;
|
||||
double a1 = 2 * (a_minus_one - a_plus_one * k);
|
||||
double a2 = a_plus_one - a_minus_one * k - k2;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_peaking(struct biquad *bq, double frequency, double Q,
|
||||
double db_gain)
|
||||
{
|
||||
/* Clip frequencies to between 0 and 1, inclusive. */
|
||||
frequency = fmax(0.0, fmin(frequency, 1.0));
|
||||
|
||||
/* Don't let Q go negative, which causes an unstable filter. */
|
||||
Q = fmax(0.0, Q);
|
||||
|
||||
double A = pow(10.0, db_gain / 40);
|
||||
|
||||
if (frequency <= 0 || frequency >= 1) {
|
||||
/* When frequency is 0 or 1, the z-transform is 1. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
if (Q <= 0) {
|
||||
/* When Q = 0, the above formulas have problems. If we
|
||||
* look at the z-transform, we can see that the limit
|
||||
* as Q->0 is A^2, so set the filter that way.
|
||||
*/
|
||||
set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
|
||||
double b0 = 1 + alpha * A;
|
||||
double b1 = -2 * k;
|
||||
double b2 = 1 - alpha * A;
|
||||
double a0 = 1 + alpha / A;
|
||||
double a1 = -2 * k;
|
||||
double a2 = 1 - alpha / A;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_notch(struct biquad *bq, double frequency, double Q)
|
||||
{
|
||||
/* Clip frequencies to between 0 and 1, inclusive. */
|
||||
frequency = fmax(0.0, fmin(frequency, 1.0));
|
||||
|
||||
/* Don't let Q go negative, which causes an unstable filter. */
|
||||
Q = fmax(0.0, Q);
|
||||
|
||||
if (frequency <= 0 || frequency >= 1) {
|
||||
/* When frequency is 0 or 1, the z-transform is 1. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
if (Q <= 0) {
|
||||
/* When Q = 0, the above formulas have problems. If we
|
||||
* look at the z-transform, we can see that the limit
|
||||
* as Q->0 is 0, so set the filter that way.
|
||||
*/
|
||||
set_coefficient(bq, 0, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
|
||||
double b0 = 1;
|
||||
double b1 = -2 * k;
|
||||
double b2 = 1;
|
||||
double a0 = 1 + alpha;
|
||||
double a1 = -2 * k;
|
||||
double a2 = 1 - alpha;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
static void biquad_allpass(struct biquad *bq, double frequency, double Q)
|
||||
{
|
||||
/* Clip frequencies to between 0 and 1, inclusive. */
|
||||
frequency = fmax(0.0, fmin(frequency, 1.0));
|
||||
|
||||
/* Don't let Q go negative, which causes an unstable filter. */
|
||||
Q = fmax(0.0, Q);
|
||||
|
||||
if (frequency <= 0 || frequency >= 1) {
|
||||
/* When frequency is 0 or 1, the z-transform is 1. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q <= 0) {
|
||||
/* When Q = 0, the above formulas have problems. If we
|
||||
* look at the z-transform, we can see that the limit
|
||||
* as Q->0 is -1, so set the filter that way.
|
||||
*/
|
||||
set_coefficient(bq, -1, 0, 0, 1, 0, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
double w0 = M_PI * frequency;
|
||||
double alpha = sin(w0) / (2 * Q);
|
||||
double k = cos(w0);
|
||||
|
||||
double b0 = 1 - alpha;
|
||||
double b1 = -2 * k;
|
||||
double b2 = 1 + alpha;
|
||||
double a0 = 1 + alpha;
|
||||
double a1 = -2 * k;
|
||||
double a2 = 1 - alpha;
|
||||
|
||||
set_coefficient(bq, b0, b1, b2, a0, a1, a2);
|
||||
}
|
||||
|
||||
void biquad_set(struct biquad *bq, enum biquad_type type, double freq, double Q,
|
||||
double gain)
|
||||
{
|
||||
/* Clear history values. */
|
||||
bq->type = type;
|
||||
bq->x1 = 0;
|
||||
bq->x2 = 0;
|
||||
|
||||
switch (type) {
|
||||
case BQ_LOWPASS:
|
||||
biquad_lowpass(bq, freq, Q);
|
||||
break;
|
||||
case BQ_HIGHPASS:
|
||||
biquad_highpass(bq, freq, Q);
|
||||
break;
|
||||
case BQ_BANDPASS:
|
||||
biquad_bandpass(bq, freq, Q);
|
||||
break;
|
||||
case BQ_LOWSHELF:
|
||||
biquad_lowshelf(bq, freq, Q, gain);
|
||||
break;
|
||||
case BQ_HIGHSHELF:
|
||||
biquad_highshelf(bq, freq, Q, gain);
|
||||
break;
|
||||
case BQ_PEAKING:
|
||||
biquad_peaking(bq, freq, Q, gain);
|
||||
break;
|
||||
case BQ_NOTCH:
|
||||
biquad_notch(bq, freq, Q);
|
||||
break;
|
||||
case BQ_ALLPASS:
|
||||
biquad_allpass(bq, freq, Q);
|
||||
break;
|
||||
case BQ_NONE:
|
||||
case BQ_RAW:
|
||||
/* Default is an identity filter. */
|
||||
set_coefficient(bq, 1, 0, 0, 1, 0, 0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
@ -52,12 +52,12 @@ filter_graph_c = static_library('filter_graph_c',
|
|||
simd_dependencies += filter_graph_c
|
||||
|
||||
spa_filter_graph = shared_library('spa-filter-graph',
|
||||
['biquad.c',
|
||||
'filter-graph.c' ],
|
||||
['filter-graph.c' ],
|
||||
include_directories : [configinc],
|
||||
dependencies : [ spa_dep, sndfile_dep, plugin_dependencies, mathlib ],
|
||||
install : true,
|
||||
install_dir : spa_plugindir / 'filter-graph',
|
||||
objects : audioconvert_c.extract_objects('biquad.c'),
|
||||
link_with: simd_dependencies
|
||||
)
|
||||
|
||||
|
|
@ -72,7 +72,8 @@ spa_filter_graph_plugin_builtin = shared_library('spa-filter-graph-plugin-builti
|
|||
include_directories : [configinc],
|
||||
install : true,
|
||||
install_dir : spa_plugindir / 'filter-graph',
|
||||
dependencies : [ filter_graph_dependencies ]
|
||||
dependencies : [ filter_graph_dependencies ],
|
||||
objects : audioconvert_c.extract_objects('biquad.c')
|
||||
)
|
||||
|
||||
spa_filter_graph_plugin_ladspa = shared_library('spa-filter-graph-plugin-ladspa',
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue