pipewire/src/modules/module-pulse-tunnel.c

1027 lines
28 KiB
C
Raw Normal View History

/* PipeWire
*
* Copyright © 2021 Wim Taymans
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <limits.h>
#include <math.h>
#include "config.h"
#include <spa/utils/result.h>
#include <spa/utils/string.h>
#include <spa/utils/json.h>
#include <spa/utils/ringbuffer.h>
#include <spa/utils/dll.h>
#include <spa/debug/pod.h>
#include <spa/pod/builder.h>
#include <spa/param/audio/format-utils.h>
#include <spa/param/latency-utils.h>
#include <spa/param/audio/raw.h>
#include <pipewire/impl.h>
#include <pipewire/i18n.h>
#include <pipewire/private.h>
#include <pulse/pulseaudio.h>
#include "module-protocol-pulse/format.h"
/** \page page_module_pulse_tunnel PipeWire Module: Pulse Tunnel
2022-04-22 16:44:15 +02:00
*
* The pulse-tunnel module provides a source or sink that tunnels all audio to
* a remote PulseAudio connection.
*
* It is usually used with the PulseAudio or module-protocol-pulse on the remote
* end to accept the connection.
*
* This module is usually used together with module-zeroconf-discover that will
* automatically load the tunnel with the right parameters based on zeroconf
* information.
*
* ## Module Options
*
* - `tunnel.mode`: the desired tunnel to create, must be `source` or `sink`.
* (Default `sink`)
2022-04-22 16:44:15 +02:00
* - `pulse.server.address`: the address of the PulseAudio server to tunnel to.
* - `pulse.latency`: the latency to end-to-end latency in milliseconds to
* maintain (Default 200ms).
* - `stream.props`: Extra properties for the local stream.
*
* ## General options
*
* Options with well-known behavior.
*
* - \ref PW_KEY_REMOTE_NAME
* - \ref PW_KEY_AUDIO_RATE
* - \ref PW_KEY_AUDIO_CHANNELS
* - \ref SPA_KEY_AUDIO_POSITION
* - \ref PW_KEY_NODE_LATENCY
* - \ref PW_KEY_NODE_NAME
* - \ref PW_KEY_NODE_DESCRIPTION
* - \ref PW_KEY_NODE_GROUP
* - \ref PW_KEY_NODE_VIRTUAL
* - \ref PW_KEY_MEDIA_CLASS
* - \ref PW_KEY_NODE_TARGET to specify the remote name or id to link to
*
* ## Example configuration of a virtual sink
*
*\code{.unparsed}
* context.modules = [
* { name = libpipewire-module-pulse-tunnel
* args = {
* tunnel.mode = sink
2022-04-22 16:44:15 +02:00
* # Set the remote address to tunnel to
* pulse.server.address = "tcp:192.168.1.126"
* #audio.rate=<sample rate>
* #audio.channels=<number of channels>
* #audio.position=<channel map>
* #node.target=<remote target node>
* stream.props = {
* # extra sink properties
* }
* }
* }
* ]
*\endcode
*/
#define NAME "pulse-tunnel"
PW_LOG_TOPIC_STATIC(mod_topic, "mod." NAME);
#define PW_LOG_TOPIC_DEFAULT mod_topic
#define DEFAULT_FORMAT "S16"
#define DEFAULT_RATE 48000
#define DEFAULT_CHANNELS 2
#define DEFAULT_POSITION "[ FL FR ]"
#define MODULE_USAGE "[ remote.name=<remote> ] " \
"[ node.latency=<latency as fraction> ] " \
"[ node.name=<name of the nodes> ] " \
"[ node.description=<description of the nodes> ] " \
"[ node.target=<remote node target name> ] " \
"[ audio.rate=<sample rate> ] " \
"[ audio.channels=<number of channels> ] " \
"[ audio.position=<channel map> ] " \
"pulse.server.address=<address> " \
2021-09-30 09:35:49 +02:00
"pulse.latency=<latency in msec> " \
"[ tunnel.mode=source|sink " \
"[ stream.props=<properties> ] "
static const struct spa_dict_item module_props[] = {
{ PW_KEY_MODULE_AUTHOR, "Wim Taymans <wim.taymans@gmail.com>" },
{ PW_KEY_MODULE_DESCRIPTION, "Create a PulseAudio tunnel" },
{ PW_KEY_MODULE_USAGE, MODULE_USAGE },
{ PW_KEY_MODULE_VERSION, PACKAGE_VERSION },
};
#define RINGBUFFER_SIZE (1u << 22)
#define RINGBUFFER_MASK (RINGBUFFER_SIZE-1)
#define DEFAULT_LATENCY_MSEC (200)
struct impl {
struct pw_context *context;
#define MODE_SINK 0
#define MODE_SOURCE 1
uint32_t mode;
struct pw_properties *props;
struct pw_impl_module *module;
struct spa_hook module_listener;
struct pw_core *core;
struct spa_hook core_proxy_listener;
struct spa_hook core_listener;
2021-09-30 09:35:49 +02:00
uint32_t latency_msec;
struct pw_properties *stream_props;
struct pw_stream *stream;
struct spa_hook stream_listener;
struct spa_audio_info_raw info;
uint32_t frame_size;
struct spa_ringbuffer ring;
void *buffer;
uint8_t empty[8192];
pa_threaded_mainloop *pa_mainloop;
pa_context *pa_context;
pa_stream *pa_stream;
uint32_t target_latency;
uint32_t current_latency;
uint32_t target_buffer;
struct spa_dll dll;
float max_error;
unsigned resync:1;
unsigned int do_disconnect:1;
};
static void cork_stream(struct impl *impl, bool cork)
{
pa_operation *operation;
pa_threaded_mainloop_lock(impl->pa_mainloop);
pw_log_debug("corking: %d", cork);
if (cork && impl->mode == MODE_SINK) {
/* When the sink becomes suspended (which is the only case where we
* cork the stream), we don't want to keep any old data around, because
* the old data is most likely unrelated to the audio that will be
* played at the time when the sink starts running again. */
if ((operation = pa_stream_flush(impl->pa_stream, NULL, NULL)))
pa_operation_unref(operation);
spa_ringbuffer_init(&impl->ring);
memset(impl->buffer, 0, RINGBUFFER_SIZE);
}
if (!cork)
impl->resync = true;
if ((operation = pa_stream_cork(impl->pa_stream, cork, NULL, NULL)))
pa_operation_unref(operation);
pa_threaded_mainloop_unlock(impl->pa_mainloop);
}
static void stream_destroy(void *d)
{
struct impl *impl = d;
spa_hook_remove(&impl->stream_listener);
impl->stream = NULL;
}
static void stream_state_changed(void *d, enum pw_stream_state old,
enum pw_stream_state state, const char *error)
{
struct impl *impl = d;
switch (state) {
case PW_STREAM_STATE_ERROR:
case PW_STREAM_STATE_UNCONNECTED:
pw_impl_module_schedule_destroy(impl->module);
break;
case PW_STREAM_STATE_PAUSED:
cork_stream(impl, true);
break;
case PW_STREAM_STATE_STREAMING:
cork_stream(impl, false);
break;
default:
break;
}
}
static void playback_stream_process(void *d)
{
struct impl *impl = d;
struct pw_buffer *buf;
struct spa_data *bd;
int32_t filled;
uint32_t write_index, offs, size;
if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) {
pw_log_debug("out of buffers: %m");
return;
}
bd = &buf->buffer->datas[0];
offs = SPA_MIN(bd->chunk->offset, bd->maxsize);
size = SPA_MIN(bd->chunk->size, bd->maxsize - offs);
size = SPA_MIN(size, RINGBUFFER_SIZE);
filled = spa_ringbuffer_get_write_index(&impl->ring, &write_index);
if (filled < 0) {
pw_log_warn("%p: underrun write:%u filled:%d",
impl, write_index, filled);
} else if ((uint32_t)filled + size > RINGBUFFER_SIZE) {
pw_log_warn("%p: overrun write:%u filled:%d + size:%u > max:%u",
impl, write_index, filled,
size, RINGBUFFER_SIZE);
impl->resync = true;
} else {
float error, corr;
error = (float)(impl->current_latency) - (float)impl->target_latency;
error = SPA_CLAMP(error, -impl->max_error, impl->max_error);
corr = spa_dll_update(&impl->dll, error);
pw_log_debug("filled:%u target:%u error:%f corr:%f %u %u", filled,
impl->target_buffer, error, corr,
impl->current_latency, impl->target_latency);
pw_stream_set_control(impl->stream,
SPA_PROP_rate, 1, &corr, NULL);
}
spa_ringbuffer_write_data(&impl->ring,
impl->buffer, RINGBUFFER_SIZE,
write_index & RINGBUFFER_MASK,
SPA_PTROFF(bd->data, offs, void),
size);
write_index += size;
spa_ringbuffer_write_update(&impl->ring, write_index);
pw_stream_queue_buffer(impl->stream, buf);
}
static void capture_stream_process(void *d)
{
struct impl *impl = d;
struct pw_buffer *buf;
struct spa_data *bd;
int32_t avail;
uint32_t size, req, index;
if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) {
pw_log_debug("out of buffers: %m");
return;
}
bd = &buf->buffer->datas[0];
if ((req = buf->requested * impl->frame_size) == 0)
req = 4096 * impl->frame_size;
size = SPA_MIN(bd->maxsize, req);
avail = spa_ringbuffer_get_read_index(&impl->ring, &index);
if (avail < (int32_t)size) {
memset(bd->data, 0, size);
} else {
float error, corr;
if (avail > (int32_t)RINGBUFFER_SIZE) {
avail = impl->target_buffer;
index += avail - impl->target_buffer;
} else {
error = (float)(impl->current_latency) - (float)impl->target_latency;
error = SPA_CLAMP(error, -impl->max_error, impl->max_error);
corr = spa_dll_update(&impl->dll, error);
pw_log_debug("avail:%u target:%u error:%f corr:%f %u %u", avail,
impl->target_buffer, error, corr,
impl->current_latency, impl->target_latency);
pw_stream_set_control(impl->stream,
SPA_PROP_rate, 1, &corr, NULL);
}
spa_ringbuffer_read_data(&impl->ring,
impl->buffer, RINGBUFFER_SIZE,
index & RINGBUFFER_MASK,
bd->data, size);
index += size;
spa_ringbuffer_read_update(&impl->ring, index);
}
bd->chunk->offset = 0;
bd->chunk->size = size;
bd->chunk->stride = impl->frame_size;
pw_stream_queue_buffer(impl->stream, buf);
}
static const struct pw_stream_events playback_stream_events = {
PW_VERSION_STREAM_EVENTS,
.destroy = stream_destroy,
.state_changed = stream_state_changed,
.process = playback_stream_process
};
static const struct pw_stream_events capture_stream_events = {
PW_VERSION_STREAM_EVENTS,
.destroy = stream_destroy,
.state_changed = stream_state_changed,
.process = capture_stream_process
};
static int create_stream(struct impl *impl)
{
int res;
uint32_t n_params;
const struct spa_pod *params[2];
uint8_t buffer[1024];
struct spa_pod_builder b;
struct spa_latency_info latency;
impl->stream = pw_stream_new(impl->core, "pulse", impl->stream_props);
impl->stream_props = NULL;
if (impl->stream == NULL)
return -errno;
if (impl->mode == MODE_SOURCE) {
pw_stream_add_listener(impl->stream,
&impl->stream_listener,
&capture_stream_events, impl);
} else {
pw_stream_add_listener(impl->stream,
&impl->stream_listener,
&playback_stream_events, impl);
}
n_params = 0;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
params[n_params++] = spa_format_audio_raw_build(&b,
SPA_PARAM_EnumFormat, &impl->info);
spa_zero(latency);
latency.direction = impl->mode == MODE_SOURCE ? PW_DIRECTION_OUTPUT : PW_DIRECTION_INPUT;
2021-09-30 09:35:49 +02:00
latency.min_ns = latency.max_ns = impl->latency_msec * SPA_NSEC_PER_MSEC;
params[n_params++] = spa_latency_build(&b,
SPA_PARAM_Latency, &latency);
if ((res = pw_stream_connect(impl->stream,
impl->mode == MODE_SOURCE ? PW_DIRECTION_OUTPUT : PW_DIRECTION_INPUT,
PW_ID_ANY,
PW_STREAM_FLAG_AUTOCONNECT |
PW_STREAM_FLAG_MAP_BUFFERS |
PW_STREAM_FLAG_RT_PROCESS,
params, n_params)) < 0)
return res;
return 0;
}
static void context_state_cb(pa_context *c, void *userdata)
{
struct impl *impl = userdata;
switch (pa_context_get_state(c)) {
case PA_CONTEXT_READY:
case PA_CONTEXT_TERMINATED:
case PA_CONTEXT_FAILED:
pa_threaded_mainloop_signal(impl->pa_mainloop, 0);
break;
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
break;
}
}
static void stream_state_cb(pa_stream *s, void * userdata)
{
struct impl *impl = userdata;
switch (pa_stream_get_state(s)) {
case PA_STREAM_READY:
case PA_STREAM_FAILED:
case PA_STREAM_TERMINATED:
pa_threaded_mainloop_signal(impl->pa_mainloop, 0);
break;
case PA_STREAM_UNCONNECTED:
case PA_STREAM_CREATING:
break;
}
}
static void stream_read_request_cb(pa_stream *s, size_t length, void *userdata)
{
struct impl *impl = userdata;
int32_t filled;
uint32_t index;
pa_usec_t latency;
int negative;
filled = spa_ringbuffer_get_write_index(&impl->ring, &index);
if (filled < 0) {
pw_log_warn("%p: underrun write:%u filled:%d",
impl, index, filled);
} else if (filled + length > RINGBUFFER_SIZE) {
pw_log_warn("%p: overrun write:%u filled:%d",
impl, index, filled);
}
while (length > 0) {
const void *p;
size_t nbytes = 0;
if (SPA_UNLIKELY(pa_stream_peek(impl->pa_stream, &p, &nbytes) != 0)) {
pw_log_error("pa_stream_peek() failed: %s",
pa_strerror(pa_context_errno(impl->pa_context)));
return;
}
pw_log_debug("read %zd nbytes:%zd", length, nbytes);
if (length < nbytes)
break;
while (nbytes > 0) {
uint32_t to_write = SPA_MIN(nbytes, sizeof(impl->empty));
spa_ringbuffer_write_data(&impl->ring,
impl->buffer, RINGBUFFER_SIZE,
index & RINGBUFFER_MASK,
p ? p : impl->empty, to_write);
index += to_write;
p = p ? SPA_PTROFF(p, to_write, void) : NULL;
nbytes -= to_write;
length -= to_write;
filled += to_write;
}
pa_stream_drop(impl->pa_stream);
}
pa_stream_get_latency(impl->pa_stream, &latency, &negative);
impl->current_latency = latency * impl->info.rate / SPA_USEC_PER_SEC;
impl->current_latency += filled / impl->frame_size;
spa_ringbuffer_write_update(&impl->ring, index);
}
static void stream_write_request_cb(pa_stream *s, size_t length, void *userdata)
{
struct impl *impl = userdata;
int32_t avail;
uint32_t index, len, offset, l0, l1;
pa_usec_t latency;
int negative;
if (impl->resync) {
impl->resync = false;
avail = length + impl->target_buffer;
spa_ringbuffer_get_write_index(&impl->ring, &index);
index -= avail;
} else {
avail = spa_ringbuffer_get_read_index(&impl->ring, &index);
}
pa_stream_get_latency(impl->pa_stream, &latency, &negative);
impl->current_latency = latency * impl->info.rate / SPA_USEC_PER_SEC;
impl->current_latency += avail / impl->frame_size;
while (avail < (int32_t)length) {
/* send silence for the data we don't have */
len = SPA_MIN(length - avail, sizeof(impl->empty));
pa_stream_write(impl->pa_stream,
impl->empty, len,
NULL, 0, PA_SEEK_RELATIVE);
length -= len;
}
if (length > 0 && avail >= (int32_t)length) {
/* always send as much as is requested */
len = length;
offset = index & RINGBUFFER_MASK;
l0 = SPA_MIN(len, RINGBUFFER_SIZE - offset);
l1 = len - l0;
pa_stream_write(impl->pa_stream,
SPA_PTROFF(impl->buffer, offset, void), l0,
NULL, 0, PA_SEEK_RELATIVE);
if (SPA_UNLIKELY(l1 > 0)) {
pa_stream_write(impl->pa_stream,
impl->buffer, l1,
NULL, 0, PA_SEEK_RELATIVE);
}
index += len;
spa_ringbuffer_read_update(&impl->ring, index);
}
}
static void stream_underflow_cb(pa_stream *s, void *userdata)
{
struct impl *impl = userdata;
pw_log_warn("underflow");
impl->resync = true;
}
static void stream_overflow_cb(pa_stream *s, void *userdata)
{
struct impl *impl = userdata;
pw_log_warn("overflow");
impl->resync = true;
}
static void stream_latency_update_cb(pa_stream *s, void *userdata)
{
struct impl *impl = userdata;
pa_usec_t usec;
int negative;
pa_stream_get_latency(s, &usec, &negative);
pw_log_debug("latency %ld negative %d", usec, negative);
pa_threaded_mainloop_signal(impl->pa_mainloop, 0);
}
static pa_proplist* tunnel_new_proplist(struct impl *impl)
{
pa_proplist *proplist = pa_proplist_new();
pa_proplist_sets(proplist, PA_PROP_APPLICATION_NAME, "PipeWire");
pa_proplist_sets(proplist, PA_PROP_APPLICATION_ID, "org.pipewire.PipeWire");
pa_proplist_sets(proplist, PA_PROP_APPLICATION_VERSION, PACKAGE_VERSION);
return proplist;
}
static int create_pulse_stream(struct impl *impl)
{
pa_sample_spec ss;
const char *server_address, *remote_node_target;
pa_proplist *props = NULL;
pa_mainloop_api *api;
char stream_name[1024];
pa_buffer_attr bufferattr;
int res = -EIO;
uint32_t latency_bytes;
if ((impl->pa_mainloop = pa_threaded_mainloop_new()) == NULL)
goto error;
api = pa_threaded_mainloop_get_api(impl->pa_mainloop);
props = tunnel_new_proplist(impl);
impl->pa_context = pa_context_new_with_proplist(api, "PipeWire", props);
pa_proplist_free(props);
if (impl->pa_context == NULL)
goto error;
pa_context_set_state_callback(impl->pa_context, context_state_cb, impl);
server_address = pw_properties_get(impl->props, "pulse.server.address");
if (pa_context_connect(impl->pa_context, server_address, 0, NULL) < 0) {
res = pa_context_errno(impl->pa_context);
goto error;
}
pa_threaded_mainloop_lock(impl->pa_mainloop);
if (pa_threaded_mainloop_start(impl->pa_mainloop) < 0)
goto error_unlock;
for (;;) {
pa_context_state_t state;
state = pa_context_get_state(impl->pa_context);
if (state == PA_CONTEXT_READY)
break;
if (!PA_CONTEXT_IS_GOOD(state)) {
res = pa_context_errno(impl->pa_context);
goto error_unlock;
}
/* Wait until the context is ready */
pa_threaded_mainloop_wait(impl->pa_mainloop);
}
ss.format = (pa_sample_format_t) format_id2pa(impl->info.format);
ss.channels = impl->info.channels;
ss.rate = impl->info.rate;
snprintf(stream_name, sizeof(stream_name), _("Tunnel for %s@%s"),
pw_get_user_name(), pw_get_host_name());
if (!(impl->pa_stream = pa_stream_new(impl->pa_context, stream_name, &ss, NULL))) {
res = pa_context_errno(impl->pa_context);
goto error_unlock;
}
pa_stream_set_state_callback(impl->pa_stream, stream_state_cb, impl);
pa_stream_set_read_callback(impl->pa_stream, stream_read_request_cb, impl);
pa_stream_set_write_callback(impl->pa_stream, stream_write_request_cb, impl);
pa_stream_set_underflow_callback(impl->pa_stream, stream_underflow_cb, impl);
pa_stream_set_overflow_callback(impl->pa_stream, stream_overflow_cb, impl);
pa_stream_set_latency_update_callback(impl->pa_stream, stream_latency_update_cb, impl);
remote_node_target = pw_properties_get(impl->props, PW_KEY_NODE_TARGET);
bufferattr.fragsize = (uint32_t) -1;
bufferattr.minreq = (uint32_t) -1;
bufferattr.maxlength = (uint32_t) -1;
bufferattr.prebuf = (uint32_t) -1;
latency_bytes = pa_usec_to_bytes(impl->latency_msec * SPA_USEC_PER_MSEC, &ss);
impl->target_latency = latency_bytes / impl->frame_size;
/* half in our buffer, half in the network + remote */
impl->target_buffer = latency_bytes / 2;
if (impl->mode == MODE_SOURCE) {
bufferattr.fragsize = latency_bytes / 2;
res = pa_stream_connect_record(impl->pa_stream,
remote_node_target, &bufferattr,
PA_STREAM_DONT_MOVE |
PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_ADJUST_LATENCY |
PA_STREAM_AUTO_TIMING_UPDATE);
} else {
bufferattr.tlength = latency_bytes / 2;
res = pa_stream_connect_playback(impl->pa_stream,
remote_node_target, &bufferattr,
PA_STREAM_DONT_MOVE |
PA_STREAM_INTERPOLATE_TIMING |
PA_STREAM_ADJUST_LATENCY |
PA_STREAM_AUTO_TIMING_UPDATE,
NULL, NULL);
}
if (res < 0) {
res = pa_context_errno(impl->pa_context);
goto error_unlock;
}
for (;;) {
pa_stream_state_t state;
state = pa_stream_get_state(impl->pa_stream);
if (state == PA_STREAM_READY)
break;
if (!PA_STREAM_IS_GOOD(state)) {
res = pa_context_errno(impl->pa_context);
goto error_unlock;
}
/* Wait until the stream is ready */
pa_threaded_mainloop_wait(impl->pa_mainloop);
}
pa_threaded_mainloop_unlock(impl->pa_mainloop);
return 0;
error_unlock:
pa_threaded_mainloop_unlock(impl->pa_mainloop);
error:
pw_log_error("failed to connect: %s", pa_strerror(res));
return -res;
}
static void core_error(void *data, uint32_t id, int seq, int res, const char *message)
{
struct impl *impl = data;
pw_log_error("error id:%u seq:%d res:%d (%s): %s",
id, seq, res, spa_strerror(res), message);
if (id == PW_ID_CORE && res == -EPIPE)
pw_impl_module_schedule_destroy(impl->module);
}
static const struct pw_core_events core_events = {
PW_VERSION_CORE_EVENTS,
.error = core_error,
};
static void core_destroy(void *d)
{
struct impl *impl = d;
spa_hook_remove(&impl->core_listener);
impl->core = NULL;
pw_impl_module_schedule_destroy(impl->module);
}
static const struct pw_proxy_events core_proxy_events = {
.destroy = core_destroy,
};
static void impl_destroy(struct impl *impl)
{
if (impl->pa_mainloop)
pa_threaded_mainloop_stop(impl->pa_mainloop);
if (impl->pa_stream)
pa_stream_unref(impl->pa_stream);
if (impl->pa_context) {
pa_context_disconnect(impl->pa_context);
pa_context_unref(impl->pa_context);
}
if (impl->pa_mainloop)
pa_threaded_mainloop_free(impl->pa_mainloop);
if (impl->stream)
pw_stream_destroy(impl->stream);
if (impl->core && impl->do_disconnect)
pw_core_disconnect(impl->core);
pw_properties_free(impl->stream_props);
pw_properties_free(impl->props);
free(impl->buffer);
free(impl);
}
static void module_destroy(void *data)
{
struct impl *impl = data;
spa_hook_remove(&impl->module_listener);
impl_destroy(impl);
}
static const struct pw_impl_module_events module_events = {
PW_VERSION_IMPL_MODULE_EVENTS,
.destroy = module_destroy,
};
static uint32_t channel_from_name(const char *name)
{
int i;
for (i = 0; spa_type_audio_channel[i].name; i++) {
if (spa_streq(name, spa_debug_type_short_name(spa_type_audio_channel[i].name)))
return spa_type_audio_channel[i].type;
}
return SPA_AUDIO_CHANNEL_UNKNOWN;
}
static void parse_position(struct spa_audio_info_raw *info, const char *val, size_t len)
{
struct spa_json it[2];
char v[256];
spa_json_init(&it[0], val, len);
if (spa_json_enter_array(&it[0], &it[1]) <= 0)
spa_json_init(&it[1], val, len);
info->channels = 0;
while (spa_json_get_string(&it[1], v, sizeof(v)) > 0 &&
info->channels < SPA_AUDIO_MAX_CHANNELS) {
info->position[info->channels++] = channel_from_name(v);
}
}
static inline uint32_t format_from_name(const char *name, size_t len)
{
int i;
for (i = 0; spa_type_audio_format[i].name; i++) {
if (strncmp(name, spa_debug_type_short_name(spa_type_audio_format[i].name), len) == 0)
return spa_type_audio_format[i].type;
}
return SPA_AUDIO_FORMAT_UNKNOWN;
}
static void parse_audio_info(const struct pw_properties *props, struct spa_audio_info_raw *info)
{
const char *str;
spa_zero(*info);
if ((str = pw_properties_get(props, PW_KEY_AUDIO_FORMAT)) == NULL)
str = DEFAULT_FORMAT;
info->format = format_from_name(str, strlen(str));
info->rate = pw_properties_get_uint32(props, PW_KEY_AUDIO_RATE, info->rate);
if (info->rate == 0)
info->rate = DEFAULT_RATE;
info->channels = pw_properties_get_uint32(props, PW_KEY_AUDIO_CHANNELS, info->channels);
info->channels = SPA_MIN(info->channels, SPA_AUDIO_MAX_CHANNELS);
if ((str = pw_properties_get(props, SPA_KEY_AUDIO_POSITION)) != NULL)
parse_position(info, str, strlen(str));
if (info->channels == 0)
parse_position(info, DEFAULT_POSITION, strlen(DEFAULT_POSITION));
}
static int calc_frame_size(struct spa_audio_info_raw *info)
{
int res = info->channels;
switch (info->format) {
case SPA_AUDIO_FORMAT_U8:
case SPA_AUDIO_FORMAT_S8:
case SPA_AUDIO_FORMAT_ALAW:
case SPA_AUDIO_FORMAT_ULAW:
return res;
case SPA_AUDIO_FORMAT_S16:
case SPA_AUDIO_FORMAT_S16_OE:
case SPA_AUDIO_FORMAT_U16:
return res * 2;
case SPA_AUDIO_FORMAT_S24:
case SPA_AUDIO_FORMAT_S24_OE:
case SPA_AUDIO_FORMAT_U24:
return res * 3;
case SPA_AUDIO_FORMAT_S24_32:
case SPA_AUDIO_FORMAT_S24_32_OE:
case SPA_AUDIO_FORMAT_S32:
case SPA_AUDIO_FORMAT_S32_OE:
case SPA_AUDIO_FORMAT_U32:
case SPA_AUDIO_FORMAT_U32_OE:
case SPA_AUDIO_FORMAT_F32:
case SPA_AUDIO_FORMAT_F32_OE:
return res * 4;
case SPA_AUDIO_FORMAT_F64:
case SPA_AUDIO_FORMAT_F64_OE:
return res * 8;
default:
return 0;
}
}
static void copy_props(struct impl *impl, struct pw_properties *props, const char *key)
{
const char *str;
if ((str = pw_properties_get(props, key)) != NULL) {
if (pw_properties_get(impl->stream_props, key) == NULL)
pw_properties_set(impl->stream_props, key, str);
}
}
SPA_EXPORT
int pipewire__module_init(struct pw_impl_module *module, const char *args)
{
struct pw_context *context = pw_impl_module_get_context(module);
struct pw_properties *props = NULL;
struct impl *impl;
const char *str;
int res;
PW_LOG_TOPIC_INIT(mod_topic);
impl = calloc(1, sizeof(struct impl));
if (impl == NULL)
return -errno;
pw_log_debug("module %p: new %s", impl, args);
if (args == NULL)
args = "";
props = pw_properties_new_string(args);
if (props == NULL) {
res = -errno;
pw_log_error( "can't create properties: %m");
goto error;
}
impl->props = props;
impl->stream_props = pw_properties_new(NULL, NULL);
if (impl->stream_props == NULL) {
res = -errno;
pw_log_error( "can't create properties: %m");
goto error;
}
impl->module = module;
impl->context = context;
spa_ringbuffer_init(&impl->ring);
impl->buffer = calloc(1, RINGBUFFER_SIZE);
spa_dll_init(&impl->dll);
if ((str = pw_properties_get(props, "tunnel.mode")) != NULL) {
if (spa_streq(str, "source")) {
impl->mode = MODE_SOURCE;
} else if (spa_streq(str, "sink")) {
impl->mode = MODE_SINK;
} else {
pw_log_error("invalid tunnel.mode '%s'", str);
res = -EINVAL;
goto error;
}
}
impl->latency_msec = pw_properties_get_uint32(props, "pulse.latency", DEFAULT_LATENCY_MSEC);
if (pw_properties_get(props, PW_KEY_NODE_VIRTUAL) == NULL)
pw_properties_set(props, PW_KEY_NODE_VIRTUAL, "true");
if (pw_properties_get(props, PW_KEY_NODE_NETWORK) == NULL)
pw_properties_set(props, PW_KEY_NODE_NETWORK, "true");
if (pw_properties_get(props, PW_KEY_MEDIA_CLASS) == NULL)
pw_properties_set(props, PW_KEY_MEDIA_CLASS,
impl->mode == MODE_SINK ?
"Audio/Sink" : "Audio/Source");
if ((str = pw_properties_get(props, "stream.props")) != NULL)
pw_properties_update_string(impl->stream_props, str, strlen(str));
copy_props(impl, props, PW_KEY_AUDIO_FORMAT);
copy_props(impl, props, PW_KEY_AUDIO_RATE);
copy_props(impl, props, PW_KEY_AUDIO_CHANNELS);
copy_props(impl, props, SPA_KEY_AUDIO_POSITION);
copy_props(impl, props, PW_KEY_NODE_NAME);
copy_props(impl, props, PW_KEY_NODE_DESCRIPTION);
copy_props(impl, props, PW_KEY_NODE_GROUP);
copy_props(impl, props, PW_KEY_NODE_LATENCY);
copy_props(impl, props, PW_KEY_NODE_VIRTUAL);
copy_props(impl, props, PW_KEY_MEDIA_CLASS);
parse_audio_info(impl->stream_props, &impl->info);
impl->frame_size = calc_frame_size(&impl->info);
if (impl->frame_size == 0) {
pw_log_error("unsupported audio format:%d channels:%d",
impl->info.format, impl->info.channels);
res = -EINVAL;
goto error;
}
spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->info.rate);
impl->max_error = 256.0f;
impl->core = pw_context_get_object(impl->context, PW_TYPE_INTERFACE_Core);
if (impl->core == NULL) {
str = pw_properties_get(props, PW_KEY_REMOTE_NAME);
impl->core = pw_context_connect(impl->context,
pw_properties_new(
PW_KEY_REMOTE_NAME, str,
NULL),
0);
impl->do_disconnect = true;
}
if (impl->core == NULL) {
res = -errno;
pw_log_error("can't connect: %m");
goto error;
}
pw_proxy_add_listener((struct pw_proxy*)impl->core,
&impl->core_proxy_listener,
&core_proxy_events, impl);
pw_core_add_listener(impl->core,
&impl->core_listener,
&core_events, impl);
if ((res = create_pulse_stream(impl)) < 0)
goto error;
if ((res = create_stream(impl)) < 0)
goto error;
pw_impl_module_add_listener(module, &impl->module_listener, &module_events, impl);
pw_impl_module_update_properties(module, &SPA_DICT_INIT_ARRAY(module_props));
return 0;
error:
impl_destroy(impl);
return res;
}