pipewire/src/modules/module-rtp/audio.c

613 lines
19 KiB
C
Raw Normal View History

/* PipeWire */
/* SPDX-FileCopyrightText: Copyright © 2022 Wim Taymans <wim.taymans@gmail.com> */
/* SPDX-License-Identifier: MIT */
static void rtp_audio_process_playback(void *data)
{
struct impl *impl = data;
struct pw_buffer *buf;
struct spa_data *d;
uint32_t wanted, timestamp, target_buffer, stride, maxsize;
int32_t avail;
if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) {
pw_log_info("Out of stream buffers: %m");
return;
}
d = buf->buffer->datas;
stride = impl->stride;
maxsize = d[0].maxsize / stride;
wanted = buf->requested ? SPA_MIN(buf->requested, maxsize) : maxsize;
if (impl->io_position && impl->direct_timestamp) {
/* in direct mode, read directly from the timestamp index,
* because sender and receiver are in sync, this would keep
* target_buffer of samples available. */
spa_ringbuffer_read_update(&impl->ring,
impl->io_position->clock.position);
}
avail = spa_ringbuffer_get_read_index(&impl->ring, &timestamp);
target_buffer = impl->target_buffer;
if (avail < (int32_t)wanted) {
enum spa_log_level level;
memset(d[0].data, 0, wanted * stride);
if (impl->have_sync) {
impl->have_sync = false;
level = SPA_LOG_LEVEL_WARN;
} else {
level = SPA_LOG_LEVEL_DEBUG;
}
pw_log(level, "underrun %d/%u < %u",
avail, target_buffer, wanted);
} else {
float error, corr;
if (impl->first) {
if ((uint32_t)avail > target_buffer) {
uint32_t skip = avail - target_buffer;
pw_log_debug("first: avail:%d skip:%u target:%u",
avail, skip, target_buffer);
timestamp += skip;
avail = target_buffer;
}
impl->first = false;
} else if (avail > (int32_t)SPA_MIN(target_buffer * 8, BUFFER_SIZE / stride)) {
pw_log_warn("overrun %u > %u", avail, target_buffer * 8);
timestamp += avail - target_buffer;
avail = target_buffer;
}
if (!impl->direct_timestamp) {
/* when not using direct timestamp and clocks are not
* in sync, try to adjust our playback rate to keep the
* requested target_buffer bytes in the ringbuffer */
error = (float)target_buffer - (float)avail;
error = SPA_CLAMP(error, -impl->max_error, impl->max_error);
corr = (float)spa_dll_update(&impl->dll, error);
pw_log_trace("avail:%u target:%u error:%f corr:%f", avail,
target_buffer, error, corr);
if (impl->io_rate_match) {
SPA_FLAG_SET(impl->io_rate_match->flags,
SPA_IO_RATE_MATCH_FLAG_ACTIVE);
impl->io_rate_match->rate = 1.0f / corr;
}
}
spa_ringbuffer_read_data(&impl->ring,
impl->buffer,
BUFFER_SIZE,
(timestamp * stride) & BUFFER_MASK,
d[0].data, wanted * stride);
timestamp += wanted;
spa_ringbuffer_read_update(&impl->ring, timestamp);
}
d[0].chunk->size = wanted * stride;
d[0].chunk->stride = stride;
d[0].chunk->offset = 0;
buf->size = wanted;
pw_stream_queue_buffer(impl->stream, buf);
}
static int rtp_audio_receive(struct impl *impl, uint8_t *buffer, ssize_t len)
{
struct rtp_header *hdr;
ssize_t hlen, plen;
uint16_t seq;
uint32_t timestamp, samples, write, expected_write;
uint32_t stride = impl->stride;
int32_t filled;
if (len < 12)
goto short_packet;
hdr = (struct rtp_header*)buffer;
if (hdr->v != 2)
goto invalid_version;
hlen = 12 + hdr->cc * 4;
if (hlen > len)
goto invalid_len;
if (impl->have_ssrc && impl->ssrc != hdr->ssrc)
goto unexpected_ssrc;
impl->ssrc = hdr->ssrc;
impl->have_ssrc = !impl->ignore_ssrc;
seq = ntohs(hdr->sequence_number);
if (impl->have_seq && impl->seq != seq) {
pw_log_info("unexpected seq (%d != %d) SSRC:%u",
seq, impl->seq, hdr->ssrc);
impl->have_sync = false;
}
impl->seq = seq + 1;
impl->have_seq = true;
timestamp = ntohl(hdr->timestamp) - impl->ts_offset;
impl->receiving = true;
plen = len - hlen;
samples = plen / stride;
filled = spa_ringbuffer_get_write_index(&impl->ring, &expected_write);
/* we always write to timestamp + delay */
write = timestamp + impl->target_buffer;
if (!impl->have_sync) {
pw_log_info("sync to timestamp:%u seq:%u ts_offset:%u SSRC:%u target:%u direct:%u",
timestamp, seq, impl->ts_offset, impl->ssrc,
impl->target_buffer, impl->direct_timestamp);
/* we read from timestamp, keeping target_buffer of data
* in the ringbuffer. */
impl->ring.readindex = timestamp;
impl->ring.writeindex = write;
filled = impl->target_buffer;
spa_dll_init(&impl->dll);
spa_dll_set_bw(&impl->dll, SPA_DLL_BW_MIN, 128, impl->rate);
memset(impl->buffer, 0, BUFFER_SIZE);
impl->have_sync = true;
} else if (expected_write != write) {
pw_log_debug("unexpected write (%u != %u)",
write, expected_write);
}
if (filled + samples > BUFFER_SIZE / stride) {
pw_log_debug("capture overrun %u + %u > %u", filled, samples,
BUFFER_SIZE / stride);
impl->have_sync = false;
} else {
pw_log_trace("got samples:%u", samples);
spa_ringbuffer_write_data(&impl->ring,
impl->buffer,
BUFFER_SIZE,
(write * stride) & BUFFER_MASK,
&buffer[hlen], (samples * stride));
write += samples;
spa_ringbuffer_write_update(&impl->ring, write);
}
return 0;
short_packet:
pw_log_warn("short packet received");
return -EINVAL;
invalid_version:
pw_log_warn("invalid RTP version");
spa_debug_log_mem(pw_log_get(), SPA_LOG_LEVEL_INFO, 0, buffer, len);
return -EPROTO;
invalid_len:
pw_log_warn("invalid RTP length");
return -EINVAL;
unexpected_ssrc:
pw_log_warn("unexpected SSRC (expected %u != %u)",
impl->ssrc, hdr->ssrc);
return -EINVAL;
}
static void set_timer(struct impl *impl, uint64_t time, uint64_t itime)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = itime / SPA_NSEC_PER_SEC;
ts.it_interval.tv_nsec = itime % SPA_NSEC_PER_SEC;
spa_system_timerfd_settime(impl->data_loop->system,
impl->timer->fd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
impl->timer_running = time != 0 && itime != 0;
}
static inline void
set_iovec(struct spa_ringbuffer *rbuf, void *buffer, uint32_t size,
uint32_t offset, struct iovec *iov, uint32_t len)
{
iov[0].iov_len = SPA_MIN(len, size - offset);
iov[0].iov_base = SPA_PTROFF(buffer, offset, void);
iov[1].iov_len = len - iov[0].iov_len;
iov[1].iov_base = buffer;
}
static void rtp_audio_flush_packets(struct impl *impl, uint32_t num_packets, uint64_t set_timestamp)
{
int32_t avail, tosend;
uint32_t stride, timestamp;
struct iovec iov[3];
struct rtp_header header;
avail = spa_ringbuffer_get_read_index(&impl->ring, &timestamp);
tosend = impl->psamples;
if (avail < tosend)
if (impl->started)
goto done;
else {
/* send last packet before emitting state_changed */
tosend = avail;
num_packets = 1;
}
else
num_packets = SPA_MIN(num_packets, (uint32_t)(avail / tosend));
stride = impl->stride;
spa_zero(header);
header.v = 2;
header.pt = impl->payload;
header.ssrc = htonl(impl->ssrc);
iov[0].iov_base = &header;
iov[0].iov_len = sizeof(header);
while (num_packets > 0) {
if (impl->marker_on_first && impl->first)
header.m = 1;
else
header.m = 0;
header.sequence_number = htons(impl->seq);
header.timestamp = htonl(impl->ts_offset + timestamp);
header.timestamp = htonl(impl->ts_offset + set_timestamp ? set_timestamp : timestamp);
set_iovec(&impl->ring,
impl->buffer, BUFFER_SIZE,
(timestamp * stride) & BUFFER_MASK,
&iov[1], tosend * stride);
pw_log_trace("sending %d packet:%d ts_offset:%d timestamp:%d",
tosend, num_packets, impl->ts_offset, timestamp);
rtp_stream_emit_send_packet(impl, iov, 3);
impl->seq++;
impl->first = false;
timestamp += tosend;
avail -= tosend;
num_packets--;
}
spa_ringbuffer_read_update(&impl->ring, timestamp);
done:
if (impl->timer_running) {
if (impl->started) {
if (avail < tosend) {
set_timer(impl, 0, 0);
}
} else if (avail <= 0) {
bool started = false;
/* the stream has been stopped and all packets have been sent */
set_timer(impl, 0, 0);
pw_loop_invoke(impl->main_loop, do_emit_state_changed, SPA_ID_INVALID, &started, sizeof started, false, impl);
}
}
}
static void rtp_audio_flush_timeout(struct impl *impl, uint64_t expirations)
{
if (expirations > 1)
pw_log_warn("missing timeout %"PRIu64, expirations);
rtp_audio_flush_packets(impl, expirations, 0);
}
static void rtp_audio_process_capture(void *data)
{
struct impl *impl = data;
struct pw_buffer *buf;
struct spa_data *d;
uint32_t offs, size, timestamp, expected_timestamp, stride;
int32_t filled, wanted;
uint32_t pending, num_queued;
struct spa_io_position *pos;
uint64_t next_nsec, quantum;
if (impl->separate_sender) {
/* apply the DLL rate */
SPA_FLAG_SET(impl->io_rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE);
impl->io_rate_match->rate = impl->ptp_corr;
}
if ((buf = pw_stream_dequeue_buffer(impl->stream)) == NULL) {
pw_log_info("Out of stream buffers: %m");
return;
}
d = buf->buffer->datas;
offs = SPA_MIN(d[0].chunk->offset, d[0].maxsize);
size = SPA_MIN(d[0].chunk->size, d[0].maxsize - offs);
stride = impl->stride;
wanted = size / stride;
filled = spa_ringbuffer_get_write_index(&impl->ring, &expected_timestamp);
pos = impl->io_position;
if (SPA_LIKELY(pos)) {
uint32_t rate = pos->clock.rate.denom;
timestamp = pos->clock.position * impl->rate / rate;
next_nsec = pos->clock.next_nsec;
quantum = (uint64_t)(pos->clock.duration * SPA_NSEC_PER_SEC / (rate * pos->clock.rate_diff));
if (impl->separate_sender) {
/* the sender process() function uses this for managing the DLL */
impl->sink_nsec = pos->clock.nsec;
impl->sink_next_nsec = pos->clock.next_nsec;
impl->sink_resamp_delay = impl->io_rate_match->delay;
impl->sink_quantum = (uint64_t)(pos->clock.duration * SPA_NSEC_PER_SEC / rate);
}
} else {
timestamp = expected_timestamp;
next_nsec = 0;
quantum = 0;
}
if (!impl->have_sync) {
pw_log_info("sync to timestamp:%u seq:%u ts_offset:%u SSRC:%u",
timestamp, impl->seq, impl->ts_offset, impl->ssrc);
impl->ring.readindex = impl->ring.writeindex = timestamp;
memset(impl->buffer, 0, BUFFER_SIZE);
impl->have_sync = true;
expected_timestamp = timestamp;
filled = 0;
if (impl->separate_sender) {
/* the sender should know that the sync state has changed, and that it should
* refill the buffer */
impl->refilling = true;
}
} else {
if (SPA_ABS((int)expected_timestamp - (int)timestamp) > (int)quantum) {
pw_log_warn("expected %u != timestamp %u", expected_timestamp, timestamp);
impl->have_sync = false;
} else if (filled + wanted > (int32_t)SPA_MIN(impl->target_buffer * 8, BUFFER_SIZE / stride)) {
pw_log_warn("overrun %u + %u > %u", filled, wanted, BUFFER_SIZE / stride);
impl->have_sync = false;
filled = 0;
}
}
pw_log_trace("writing %u samples at %u", wanted, expected_timestamp);
spa_ringbuffer_write_data(&impl->ring,
impl->buffer,
BUFFER_SIZE,
(expected_timestamp * stride) & BUFFER_MASK,
SPA_PTROFF(d[0].data, offs, void), wanted * stride);
expected_timestamp += wanted;
spa_ringbuffer_write_update(&impl->ring, expected_timestamp);
pw_stream_queue_buffer(impl->stream, buf);
if (impl->separate_sender) {
/* sending will happen in a separate process() */
return;
}
pending = filled / impl->psamples;
num_queued = (filled + wanted) / impl->psamples;
if (num_queued > 0) {
/* flush all previous packets plus new one right away */
rtp_audio_flush_packets(impl, pending + 1, 0);
num_queued -= SPA_MIN(num_queued, pending + 1);
if (num_queued > 0) {
/* schedule timer for remaining */
int64_t interval = quantum / (num_queued + 1);
uint64_t time = next_nsec - num_queued * interval;
pw_log_trace("%u %u %"PRIu64" %"PRIu64, pending, num_queued, time, interval);
set_timer(impl, time, interval);
}
}
}
static void ptp_sender_destroy(void *d)
{
struct impl *impl = d;
spa_hook_remove(&impl->ptp_sender_listener);
impl->ptp_sender = NULL;
}
static void ptp_sender_process(void *d, struct spa_io_position *position)
{
struct impl *impl = d;
uint64_t nsec, next_nsec, quantum, quantum_nsec;
uint32_t ptp_timestamp, rtp_timestamp, read_idx;
uint32_t rate;
uint32_t filled;
double error, in_flight, delay;
nsec = position->clock.nsec;
next_nsec = position->clock.next_nsec;
/* the ringbuffer indices are in sink timetamp domain */
filled = spa_ringbuffer_get_read_index(&impl->ring, &read_idx);
if (SPA_LIKELY(position)) {
rate = position->clock.rate.denom;
quantum = position->clock.duration;
quantum_nsec = (uint64_t)(quantum * SPA_NSEC_PER_SEC / rate);
/* PTP time tells us what time it is */
ptp_timestamp = position->clock.position * impl->rate / rate;
/* RTP time is based on when we sent the first packet after the last sync */
rtp_timestamp = impl->rtp_base_ts + read_idx;
} else {
pw_log_warn("No clock information, skipping");
return;
}
pw_log_trace("sink nsec:%lu, sink next_nsec:%lu, ptp nsec:%lu, ptp next_sec:%lu",
impl->sink_nsec, impl->sink_next_nsec, nsec, next_nsec);
/* If send is lagging by more than 2 or more quanta, reset */
if (!impl->refilling && impl->rtp_last_ts &&
SPA_ABS((int32_t)ptp_timestamp - (int32_t)impl->rtp_last_ts) >= (int32_t)(2 * quantum)) {
pw_log_warn("expected %u - timestamp %u = %d >= 2 * %lu quantum", rtp_timestamp, impl->rtp_last_ts,
(int)rtp_timestamp - (int)impl->rtp_last_ts, quantum);
goto resync;
}
if (!impl->have_sync) {
pw_log_trace("Waiting for sync");
return;
}
in_flight = (double)impl->sink_quantum * impl->rate / SPA_NSEC_PER_SEC *
(double)(nsec - impl->sink_nsec) / (impl->sink_next_nsec - impl->sink_nsec);
delay = filled + in_flight + impl->sink_resamp_delay;
/* Make sure the PTP node wake up times are within the bounds of sink
* node wake up times (with a little bit of tolerance). */
if (SPA_LIKELY(nsec > impl->sink_nsec - quantum_nsec &&
nsec < impl->sink_next_nsec + quantum_nsec)) {
/* Start adjusting if we're at/past the target delay. We requested ~1/2 the buffer
* size as the sink latency, so doing so ensures that we have two sink quanta of
* data, making the chance of and underrun low even for small buffer values */
if (impl->refilling && (double)impl->target_buffer - delay <= 0) {
impl->refilling = false;
/* Store the offset for the PTP time at which we start sending */
impl->rtp_base_ts = ptp_timestamp - read_idx;
rtp_timestamp = impl->rtp_base_ts + read_idx; /* = ptp_timestamp */
pw_log_debug("start sending. sink quantum:%lu, ptp quantum:%lu", impl->sink_quantum, quantum_nsec);
}
if (!impl->refilling) {
/*
* As per Controlling Adaptive Resampling paper[1], maintain
* W(t) - R(t) - delta = 0. We keep delta as target_buffer.
*
* [1] http://kokkinizita.linuxaudio.org/papers/adapt-resamp.pdf
*/
error = delay - impl->target_buffer;
error = SPA_CLAMP(error, -impl->max_error, impl->max_error);
impl->ptp_corr = spa_dll_update(&impl->ptp_dll, error);
pw_log_debug("filled:%u in_flight:%g delay:%g target:%u error:%f corr:%f",
filled, in_flight, delay, impl->target_buffer, error, impl->ptp_corr);
if (filled >= impl->psamples) {
rtp_audio_flush_packets(impl, 1, rtp_timestamp);
impl->rtp_last_ts = rtp_timestamp;
}
}
} else {
pw_log_warn("PTP node wake up time out of bounds !(%lu < %lu < %lu)",
impl->sink_nsec, nsec, impl->sink_next_nsec);
goto resync;
}
return;
resync:
impl->have_sync = false;
impl->rtp_last_ts = 0;
return;
}
static const struct pw_filter_events ptp_sender_events = {
PW_VERSION_FILTER_EVENTS,
.destroy = ptp_sender_destroy,
.process = ptp_sender_process
};
static int setup_ptp_sender(struct impl *impl, struct pw_core *core, enum pw_direction direction, const char *driver_grp)
{
const struct spa_pod *params[4];
struct pw_properties *filter_props = NULL;
struct spa_pod_builder b;
uint32_t n_params;
uint8_t buffer[1024];
int ret;
if (direction != PW_DIRECTION_INPUT)
return 0;
if (driver_grp == NULL) {
pw_log_info("AES67 driver group not specified, no separate sender configured");
return 0;
}
pw_log_info("AES67 driver group: %s, setting up separate sender", driver_grp);
spa_dll_init(&impl->ptp_dll);
/* BW selected empirically, as it converges most quickly and holds reasonably well in testing */
spa_dll_set_bw(&impl->ptp_dll, SPA_DLL_BW_MAX, impl->psamples, impl->rate);
impl->ptp_corr = 1.0;
n_params = 0;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
filter_props = pw_properties_new(NULL, NULL);
if (filter_props == NULL) {
int res = -errno;
pw_log_error( "can't create properties: %m");
return res;
}
pw_properties_set(filter_props, PW_KEY_NODE_GROUP, driver_grp);
pw_properties_setf(filter_props, PW_KEY_NODE_NAME, "%s-ptp-sender", pw_stream_get_name(impl->stream));
pw_properties_set(filter_props, PW_KEY_NODE_ALWAYS_PROCESS, "true");
/*
* sess.latency.msec defines how much data is buffered before it is
* sent out on the network. This is done by setting the node.latency
* to that value, and process function will get chunks of that size.
* It is then split up into psamples chunks and send every ptime.
*
* With this separate sender mechanism we have some latency in stream
* via node.latency, and some in ringbuffer between sink and sender.
* Ideally we want to have a total latency that still corresponds to
* sess.latency.msec. We do this by using the property setting and
* splitting some of it as stream latency and some as ringbuffer
* latency. The ringbuffer latency is actually determined by how
* long we wait before setting `refilling` to false and start the
* sending. Also, see `filter_process`.
*/
pw_properties_setf(filter_props, PW_KEY_NODE_FORCE_QUANTUM, "%u", impl->psamples);
pw_properties_setf(filter_props, PW_KEY_NODE_FORCE_RATE, "%u", impl->rate);
impl->ptp_sender = pw_filter_new(core, NULL, filter_props);
if (impl->ptp_sender == NULL)
return -errno;
pw_filter_add_listener(impl->ptp_sender, &impl->ptp_sender_listener,
&ptp_sender_events, impl);
n_params = 0;
params[n_params++] = spa_format_audio_raw_build(&b,
SPA_PARAM_EnumFormat, &impl->info.info.raw);
params[n_params++] = spa_format_audio_raw_build(&b,
SPA_PARAM_Format, &impl->info.info.raw);
ret = pw_filter_connect(impl->ptp_sender,
PW_FILTER_FLAG_RT_PROCESS,
params, n_params);
if (ret == 0) {
pw_log_info("created pw_filter for separate sender");
impl->separate_sender = true;
} else {
pw_log_error("failed to create pw_filter for separate sender");
impl->separate_sender = false;
}
return ret;
}
static int rtp_audio_init(struct impl *impl, struct pw_core *core, enum spa_direction direction, const char *ptp_driver)
{
if (direction == SPA_DIRECTION_INPUT)
impl->stream_events.process = rtp_audio_process_capture;
else
impl->stream_events.process = rtp_audio_process_playback;
impl->receive_rtp = rtp_audio_receive;
impl->flush_timeout = rtp_audio_flush_timeout;
setup_ptp_sender(impl, core, direction, ptp_driver);
return 0;
}