foot/sixel.c
Daniel Eklöf f7bdc4c5b4
sixel: limit image size to the one specified in the raster attrs
If a sixel has set an explicit width/height, in its raster attributes,
do *not* allow the image to extend beyond this.

Before this patch, we dynamically resized images if the sixel encoder
emitted sixel data beyond the previously set width/height.

Now, we ignore writes outside the configured size.
2024-03-16 15:33:42 +01:00

2020 lines
62 KiB
C

#include "sixel.h"
#include <string.h>
#include <limits.h>
#define LOG_MODULE "sixel"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "debug.h"
#include "grid.h"
#include "hsl.h"
#include "render.h"
#include "util.h"
#include "xmalloc.h"
#include "xsnprintf.h"
static size_t count;
static void sixel_put_generic(struct terminal *term, uint8_t c);
static void sixel_put_ar_11(struct terminal *term, uint8_t c);
/* VT330/VT340 Programmer Reference Manual - Table 2-3 VT340 Default Color Map */
static const uint32_t vt340_default_colors[16] = {
0xff000000,
0xff3333cc,
0xffcc2121,
0xff33cc33,
0xffcc33cc,
0xff33cccc,
0xffcccc33,
0xff878787,
0xff424242,
0xff545499,
0xff994242,
0xff549954,
0xff995499,
0xff549999,
0xff999954,
0xffcccccc,
};
_Static_assert(sizeof(vt340_default_colors) / sizeof(vt340_default_colors[0]) == 16,
"wrong number of elements");
void
sixel_fini(struct terminal *term)
{
free(term->sixel.image.data);
free(term->sixel.private_palette);
free(term->sixel.shared_palette);
}
sixel_put
sixel_init(struct terminal *term, int p1, int p2, int p3)
{
/*
* P1: pixel aspect ratio - unimplemented
* P2: background color mode
* - 0|2: empty pixels use current background color
* - 1: empty pixels remain at their current color (i.e. transparent)
* P3: horizontal grid size - ignored
*/
xassert(term->sixel.image.data == NULL);
xassert(term->sixel.palette_size <= SIXEL_MAX_COLORS);
/* Default aspect ratio is 2:1 */
const int pad = 1;
const int pan =
(p1 == 2) ? 5 :
(p1 == 3 || p1 == 4) ? 3 :
(p1 == 7 || p1 == 8 || p1 == 9) ? 1 : 2;
LOG_DBG("initializing sixel with "
"p1=%d (pan=%d, pad=%d, aspect-ratio=%d:%d), "
"p2=%d (transparent=%s), "
"p3=%d (ignored)",
p1, pan, pad, pan, pad, p2, p2 == 1 ? "yes" : "no", p3);
term->sixel.state = SIXEL_DECSIXEL;
term->sixel.pos = (struct coord){0, 0};
term->sixel.color_idx = 0;
term->sixel.pan = pan;
term->sixel.pad = pad;
term->sixel.size_locked = false;
term->sixel.param = 0;
term->sixel.param_idx = 0;
memset(term->sixel.params, 0, sizeof(term->sixel.params));
term->sixel.transparent_bg = p2 == 1;
term->sixel.image.data = NULL;
term->sixel.image.p = NULL;
term->sixel.image.width = 0;
term->sixel.image.height = 0;
term->sixel.image.alloc_height = 0;
if (term->sixel.use_private_palette) {
xassert(term->sixel.private_palette == NULL);
term->sixel.private_palette = xcalloc(
term->sixel.palette_size, sizeof(term->sixel.private_palette[0]));
memcpy(
term->sixel.private_palette, vt340_default_colors,
min(sizeof(vt340_default_colors),
term->sixel.palette_size * sizeof(term->sixel.private_palette[0])));
term->sixel.palette = term->sixel.private_palette;
} else {
if (term->sixel.shared_palette == NULL) {
term->sixel.shared_palette = xcalloc(
term->sixel.palette_size, sizeof(term->sixel.shared_palette[0]));
memcpy(
term->sixel.shared_palette, vt340_default_colors,
min(sizeof(vt340_default_colors),
term->sixel.palette_size * sizeof(term->sixel.shared_palette[0])));
} else {
/* Shared palette - do *not* reset palette for new sixels */
}
term->sixel.palette = term->sixel.shared_palette;
}
uint32_t bg = 0;
switch (term->vt.attrs.bg_src) {
case COLOR_RGB:
bg = 0xffu << 24 | term->vt.attrs.bg;
break;
case COLOR_BASE16:
case COLOR_BASE256:
bg = 0xffu << 24 | term->colors.table[term->vt.attrs.bg];
break;
case COLOR_DEFAULT:
if (term->colors.alpha == 0xffff)
bg = 0xffu << 24 | term->colors.bg;
else {
/* Alpha needs to be pre-multiplied */
uint32_t r = (term->colors.bg >> 16) & 0xff;
uint32_t g = (term->colors.bg >> 8) & 0xff;
uint32_t b = (term->colors.bg >> 0) & 0xff;
uint32_t alpha = term->colors.alpha;
r *= alpha; r /= 0xffff;
g *= alpha; g /= 0xffff;
b *= alpha; b /= 0xffff;
bg = (alpha >> 8) << 24 | (r & 0xff) << 16 | (g & 0xff) << 8 | (b & 0xff);
}
break;
}
term->sixel.default_bg = term->sixel.transparent_bg
? 0x00000000u
: bg;
count = 0;
return pan == 1 && pad == 1 ? &sixel_put_ar_11 : &sixel_put_generic;
}
static void
sixel_invalidate_cache(struct sixel *sixel)
{
if (sixel->scaled.pix != NULL)
pixman_image_unref(sixel->scaled.pix);
free(sixel->scaled.data);
sixel->scaled.pix = NULL;
sixel->scaled.data = NULL;
sixel->scaled.width = -1;
sixel->scaled.height = -1;
sixel->pix = NULL;
sixel->width = -1;
sixel->height = -1;
}
void
sixel_destroy(struct sixel *sixel)
{
sixel_invalidate_cache(sixel);
if (sixel->original.pix != NULL)
pixman_image_unref(sixel->original.pix);
free(sixel->original.data);
sixel->original.pix = NULL;
sixel->original.data = NULL;
}
void
sixel_destroy_all(struct terminal *term)
{
tll_foreach(term->normal.sixel_images, it)
sixel_destroy(&it->item);
tll_foreach(term->alt.sixel_images, it)
sixel_destroy(&it->item);
tll_free(term->normal.sixel_images);
tll_free(term->alt.sixel_images);
}
static void
sixel_erase(struct terminal *term, struct sixel *sixel)
{
for (int i = 0; i < sixel->rows; i++) {
int r = (sixel->pos.row + i) & (term->grid->num_rows - 1);
struct row *row = term->grid->rows[r];
if (row == NULL) {
/* A resize/reflow may cause row to now be unallocated */
continue;
}
row->dirty = true;
for (int c = sixel->pos.col; c < min(sixel->pos.col + sixel->cols, term->cols); c++)
row->cells[c].attrs.clean = 0;
}
sixel_destroy(sixel);
}
/*
* Verify the sixels are sorted correctly.
*
* The sixels are sorted on their *end* row, in descending order. This
* invariant means the most recent sixels appear first in the list.
*/
static void
verify_list_order(const struct terminal *term)
{
#if defined(_DEBUG)
int prev_row = INT_MAX;
int prev_col = -1;
int prev_col_count = 0;
/* To aid debugging */
size_t UNUSED idx = 0;
tll_foreach(term->grid->sixel_images, it) {
int row = grid_row_abs_to_sb(
term->grid, term->rows, it->item.pos.row + it->item.rows - 1);
int col = it->item.pos.col;
int col_count = it->item.cols;
xassert(row <= prev_row);
if (row == prev_row) {
/* Allowed to be on the same row only if their columns
* don't overlap */
xassert(col + col_count <= prev_col ||
prev_col + prev_col_count <= col);
}
prev_row = row;
prev_col = col;
prev_col_count = col_count;
idx++;
}
#endif
}
/*
* Verifies there aren't any sixels that cross the scrollback
* wrap-around. This invariant means a sixel's absolute row numbers
* are strictly increasing.
*/
static void
verify_no_wraparound_crossover(const struct terminal *term)
{
#if defined(_DEBUG)
tll_foreach(term->grid->sixel_images, it) {
const struct sixel *six = &it->item;
xassert(six->pos.row >= 0);
xassert(six->pos.row < term->grid->num_rows);
int end = (six->pos.row + six->rows - 1) & (term->grid->num_rows - 1);
xassert(end >= six->pos.row);
}
#endif
}
/*
* Verify there aren't any sixels that cross the scrollback end. This
* invariant means a sixel's rebased row numbers are strictly
* increasing.
*/
static void
verify_scrollback_consistency(const struct terminal *term)
{
#if defined(_DEBUG)
tll_foreach(term->grid->sixel_images, it) {
const struct sixel *six = &it->item;
int last_row = -1;
for (int i = 0; i < six->rows; i++) {
int row_no = grid_row_abs_to_sb(
term->grid, term->rows, six->pos.row + i);
if (last_row != -1)
xassert(last_row < row_no);
last_row = row_no;
}
}
#endif
}
/*
* Verifies no sixel overlap with any other sixels.
*/
static void
verify_no_overlap(const struct terminal *term)
{
#if defined(_DEBUG)
tll_foreach(term->grid->sixel_images, it) {
const struct sixel *six1 = &it->item;
pixman_region32_t rect1;
pixman_region32_init_rect(
&rect1, six1->pos.col, six1->pos.row, six1->cols, six1->rows);
tll_foreach(term->grid->sixel_images, it2) {
const struct sixel *six2 = &it2->item;
if (six1 == six2)
continue;
pixman_region32_t rect2;
pixman_region32_init_rect(
&rect2, six2->pos.col,
six2->pos.row, six2->cols, six2->rows);
pixman_region32_t intersection;
pixman_region32_init(&intersection);
pixman_region32_intersect(&intersection, &rect1, &rect2);
xassert(!pixman_region32_not_empty(&intersection));
pixman_region32_fini(&intersection);
pixman_region32_fini(&rect2);
}
pixman_region32_fini(&rect1);
}
#endif
}
static void
verify_sixels(const struct terminal *term)
{
verify_no_wraparound_crossover(term);
verify_scrollback_consistency(term);
verify_no_overlap(term);
verify_list_order(term);
}
static void
sixel_insert(struct terminal *term, struct sixel sixel)
{
int end_row = grid_row_abs_to_sb(
term->grid, term->rows, sixel.pos.row + sixel.rows - 1);
tll_foreach(term->grid->sixel_images, it) {
int rebased = grid_row_abs_to_sb(
term->grid, term->rows, it->item.pos.row + it->item.rows - 1);
if (rebased < end_row) {
tll_insert_before(term->grid->sixel_images, it, sixel);
goto out;
}
}
tll_push_back(term->grid->sixel_images, sixel);
out:
#if defined(LOG_ENABLE_DBG) && LOG_ENABLE_DBG
LOG_DBG("sixel list after insertion:");
tll_foreach(term->grid->sixel_images, it) {
LOG_DBG(" rows=%d+%d", it->item.pos.row, it->item.rows);
}
#endif
verify_sixels(term);
}
void
sixel_scroll_up(struct terminal *term, int rows)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
tll_rforeach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
int six_start = grid_row_abs_to_sb(term->grid, term->rows, six->pos.row);
if (six_start < rows) {
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
} else {
/*
* Unfortunately, we cannot break here.
*
* The sixels are sorted on their *end* row. This means
* there may be a sixel with a top row that will be
* scrolled out *anywhere* in the list (think of a huuuuge
* sixel that covers the entire scrollback)
*/
//break;
}
}
term_update_ascii_printer(term);
verify_sixels(term);
}
void
sixel_scroll_down(struct terminal *term, int rows)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
xassert(term->grid->num_rows >= rows);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
int six_end = grid_row_abs_to_sb(
term->grid, term->rows, six->pos.row + six->rows - 1);
if (six_end >= term->grid->num_rows - rows) {
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
} else
break;
}
term_update_ascii_printer(term);
verify_sixels(term);
}
static void
blend_new_image_over_old(const struct terminal *term,
const struct sixel *six, pixman_region32_t *six_rect,
int row, int col, pixman_image_t **pix, bool *opaque)
{
xassert(pix != NULL);
xassert(opaque != NULL);
/*
* TODO: handle images being emitted with different cell dimensions
*/
const int six_ofs_x = six->pos.col * six->cell_width;
const int six_ofs_y = six->pos.row * six->cell_height;
const int img_ofs_x = col * six->cell_width;
const int img_ofs_y = row * six->cell_height;
const int img_width = pixman_image_get_width(*pix);
const int img_height = pixman_image_get_height(*pix);
pixman_region32_t pix_rect;
pixman_region32_init_rect(
&pix_rect, img_ofs_x, img_ofs_y, img_width, img_height);
/* Blend the intersection between the old and new images */
pixman_region32_t intersection;
pixman_region32_init(&intersection);
pixman_region32_intersect(&intersection, six_rect, &pix_rect);
int n_rects = -1;
pixman_box32_t *boxes = pixman_region32_rectangles(
&intersection, &n_rects);
if (n_rects == 0)
goto out;
xassert(n_rects == 1);
pixman_box32_t *box = &boxes[0];
if (!*opaque) {
/*
* New image is transparent - blend on top of the old
* sixel image.
*/
pixman_image_composite32(
PIXMAN_OP_OVER_REVERSE,
six->original.pix, NULL, *pix,
box->x1 - six_ofs_x, box->y1 - six_ofs_y,
0, 0,
box->x1 - img_ofs_x, box->y1 - img_ofs_y,
box->x2 - box->x1, box->y2 - box->y1);
}
/*
* Since the old image is split into sub-tiles on a
* per-row basis, we need to enlarge the new image and
* copy the old image if the old image extends beyond the
* new image.
*
* The "bounding" coordinates are either the edges of the
* old image, or the next cell boundary, whichever comes
* first.
*/
int bounding_x = six_ofs_x + six->original.width > img_ofs_x + img_width
? min(
six_ofs_x + six->original.width,
(box->x2 + six->cell_width - 1) / six->cell_width * six->cell_width)
: box->x2;
int bounding_y = six_ofs_y + six->original.height > img_ofs_y + img_height
? min(
six_ofs_y + six->original.height,
(box->y2 + six->cell_height - 1) / six->cell_height * six->cell_height)
: box->y2;
/* The required size of the new image */
const int required_width = bounding_x - img_ofs_x;
const int required_height = bounding_y - img_ofs_y;
const int new_width = max(img_width, required_width);
const int new_height = max(img_height, required_height);
if (new_width <= img_width && new_height <= img_height)
goto out;
//LOG_INFO("enlarging: %dx%d -> %dx%d", img_width, img_height, new_width, new_height);
if (!six->opaque) {
/* Transparency is viral */
*opaque = false;
}
/* Create a new pixmap */
int stride = new_width * sizeof(uint32_t);
uint32_t *new_data = xmalloc(stride * new_height);
pixman_image_t *pix2 = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8, new_width, new_height, new_data, stride);
#if defined(_DEBUG)
/* Fill new image with an easy-to-recognize color (green) */
for (size_t i = 0; i < new_width * new_height; i++)
new_data[i] = 0xff00ff00;
#endif
/* Copy the new image, from its old pixmap, to the new pixmap */
pixman_image_composite32(
PIXMAN_OP_SRC,
*pix, NULL, pix2, 0, 0, 0, 0, 0, 0, img_width, img_height);
/* Copy the bottom tile of the old sixel image into the new pixmap */
pixman_image_composite32(
PIXMAN_OP_SRC,
six->original.pix, NULL, pix2,
box->x1 - six_ofs_x, box->y2 - six_ofs_y,
0, 0,
box->x1 - img_ofs_x, box->y2 - img_ofs_y,
bounding_x - box->x1, bounding_y - box->y2);
/* Copy the right tile of the old sixel image into the new pixmap */
pixman_image_composite32(
PIXMAN_OP_SRC,
six->original.pix, NULL, pix2,
box->x2 - six_ofs_x, box->y1 - six_ofs_y,
0, 0,
box->x2 - img_ofs_x, box->y1 - img_ofs_y,
bounding_x - box->x2, bounding_y - box->y1);
/*
* Ensure the newly allocated area is initialized.
*
* Some of it, or all, will have been initialized above, by the
* bottom and right tiles from the old sixel image. However, there
* may be areas in the new image that isn't covered by the old
* image. These areas need to be made transparent.
*/
pixman_region32_t uninitialized;
pixman_region32_init_rects(
&uninitialized,
(const pixman_box32_t []){
/* Extended image area on the right side */
{img_ofs_x + img_width, img_ofs_y, img_ofs_x + new_width, img_ofs_y + new_height},
/* Bottom */
{img_ofs_x, img_ofs_y + img_height, img_ofs_x + new_width, img_ofs_y + new_height}},
2);
/* Subtract the old sixel image, since the area(s) covered by the
* old image has already been copied, and *must* not be
* overwritten */
pixman_region32_t diff;
pixman_region32_init(&diff);
pixman_region32_subtract(&diff, &uninitialized, six_rect);
if (pixman_region32_not_empty(&diff)) {
pixman_image_t *src =
pixman_image_create_solid_fill(&(pixman_color_t){0});
int count = -1;
pixman_box32_t *rects = pixman_region32_rectangles(&diff, &count);
for (int i = 0; i < count; i++) {
pixman_image_composite32(
PIXMAN_OP_SRC,
src, NULL, pix2,
0, 0, 0, 0,
rects[i].x1 - img_ofs_x, rects[i].y1 - img_ofs_y,
rects[i].x2 - rects[i].x1,
rects[i].y2 - rects[i].y1);
}
pixman_image_unref(src);
*opaque = false;
}
pixman_region32_fini(&diff);
pixman_region32_fini(&uninitialized);
/* Use the new pixmap in place of the old one */
free(pixman_image_get_data(*pix));
pixman_image_unref(*pix);
*pix = pix2;
out:
pixman_region32_fini(&intersection);
pixman_region32_fini(&pix_rect);
}
static void
sixel_overwrite(struct terminal *term, struct sixel *six,
int row, int col, int height, int width,
pixman_image_t **pix, bool *opaque)
{
pixman_region32_t six_rect;
pixman_region32_init_rect(
&six_rect,
six->pos.col * six->cell_width, six->pos.row * six->cell_height,
six->original.width, six->original.height);
pixman_region32_t overwrite_rect;
pixman_region32_init_rect(
&overwrite_rect,
col * six->cell_width, row * six->cell_height,
width * six->cell_width, height * six->cell_height);
#if defined(_DEBUG)
pixman_region32_t cell_intersection;
pixman_region32_init(&cell_intersection);
pixman_region32_intersect(&cell_intersection, &six_rect, &overwrite_rect);
xassert(!pixman_region32_not_empty(&six_rect) ||
pixman_region32_not_empty(&cell_intersection));
pixman_region32_fini(&cell_intersection);
#endif
if (pix != NULL)
blend_new_image_over_old(term, six, &six_rect, row, col, pix, opaque);
pixman_region32_t diff;
pixman_region32_init(&diff);
pixman_region32_subtract(&diff, &six_rect, &overwrite_rect);
pixman_region32_fini(&six_rect);
pixman_region32_fini(&overwrite_rect);
int n_rects = -1;
pixman_box32_t *boxes = pixman_region32_rectangles(&diff, &n_rects);
for (int i = 0; i < n_rects; i++) {
LOG_DBG("box #%d: x1=%d, y1=%d, x2=%d, y2=%d", i,
boxes[i].x1, boxes[i].y1, boxes[i].x2, boxes[i].y2);
xassert(boxes[i].x1 % six->cell_width == 0);
xassert(boxes[i].y1 % six->cell_height == 0);
/* New image's position, in cells */
const int new_col = boxes[i].x1 / six->cell_width;
const int new_row = boxes[i].y1 / six->cell_height;
xassert(new_row < term->grid->num_rows);
/* New image's width and height, in pixels */
const int new_width = boxes[i].x2 - boxes[i].x1;
const int new_height = boxes[i].y2 - boxes[i].y1;
uint32_t *new_data = xmalloc(new_width * new_height * sizeof(uint32_t));
const uint32_t *old_data = six->original.data;
/* Pixel offsets into old image backing memory */
const int x_ofs = boxes[i].x1 - six->pos.col * six->cell_width;
const int y_ofs = boxes[i].y1 - six->pos.row * six->cell_height;
/* Copy image data, one row at a time */
for (size_t j = 0; j < new_height; j++) {
memcpy(
&new_data[(0 + j) * new_width],
&old_data[(y_ofs + j) * six->original.width + x_ofs],
new_width * sizeof(uint32_t));
}
pixman_image_t *new_pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
new_width, new_height, new_data, new_width * sizeof(uint32_t));
struct sixel new_six = {
.pix = NULL,
.width = -1,
.height = -1,
.pos = {.col = new_col, .row = new_row},
.cols = (new_width + six->cell_width - 1) / six->cell_width,
.rows = (new_height + six->cell_height - 1) / six->cell_height,
.opaque = six->opaque,
.cell_width = six->cell_width,
.cell_height = six->cell_height,
.original = {
.data = new_data,
.pix = new_pix,
.width = new_width,
.height = new_height,
},
.scaled = {
.data = NULL,
.pix = NULL,
.width = -1,
.height = -1,
},
};
#if defined(_DEBUG)
/* Assert we don't cross the scrollback wrap-around */
const int new_end = new_six.pos.row + new_six.rows - 1;
xassert(new_end < term->grid->num_rows);
#endif
sixel_insert(term, new_six);
}
pixman_region32_fini(&diff);
}
/* Row numbers are absolute */
static void
_sixel_overwrite_by_rectangle(
struct terminal *term, int row, int col, int height, int width,
pixman_image_t **pix, bool *opaque)
{
verify_sixels(term);
#if defined(_DEBUG)
pixman_region32_t overwrite_rect;
pixman_region32_init_rect(&overwrite_rect, col, row, width, height);
#endif
const int start = row;
const int end = row + height - 1;
/* We should never generate scrollback wrapping sixels */
xassert(end < term->grid->num_rows);
const int scrollback_rel_start = grid_row_abs_to_sb(
term->grid, term->rows, start);
bool UNUSED would_have_breaked = false;
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1);
const int six_scrollback_rel_end =
grid_row_abs_to_sb(term->grid, term->rows, six_end);
/* We should never generate scrollback wrapping sixels */
xassert(six_end < term->grid->num_rows);
if (six_scrollback_rel_end < scrollback_rel_start) {
/* All remaining sixels are *before* our rectangle */
would_have_breaked = true;
break;
}
#if defined(_DEBUG)
pixman_region32_t six_rect;
pixman_region32_init_rect(&six_rect, six->pos.col, six->pos.row, six->cols, six->rows);
pixman_region32_t intersection;
pixman_region32_init(&intersection);
pixman_region32_intersect(&intersection, &six_rect, &overwrite_rect);
const bool collides = pixman_region32_not_empty(&intersection);
#else
const bool UNUSED collides = false;
#endif
if ((start <= six_start && end >= six_start) || /* Crosses sixel start boundary */
(start <= six_end && end >= six_end) || /* Crosses sixel end boundary */
(start >= six_start && end <= six_end)) /* Fully within sixel range */
{
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols - 1;
if ((col <= col_start && col + width - 1 >= col_start) ||
(col <= col_end && col + width - 1 >= col_end) ||
(col >= col_start && col + width - 1 <= col_end))
{
xassert(!would_have_breaked);
struct sixel to_be_erased = *six;
tll_remove(term->grid->sixel_images, it);
sixel_overwrite(term, &to_be_erased, start, col, height, width,
pix, opaque);
sixel_erase(term, &to_be_erased);
} else
xassert(!collides);
} else
xassert(!collides);
#if defined(_DEBUG)
pixman_region32_fini(&intersection);
pixman_region32_fini(&six_rect);
#endif
}
#if defined(_DEBUG)
pixman_region32_fini(&overwrite_rect);
#endif
}
void
sixel_overwrite_by_rectangle(
struct terminal *term, int row, int col, int height, int width)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
const int start = (term->grid->offset + row) & (term->grid->num_rows - 1);
const int end = (start + height - 1) & (term->grid->num_rows - 1);
const bool wraps = end < start;
if (wraps) {
int rows_to_wrap_around = term->grid->num_rows - start;
xassert(height - rows_to_wrap_around > 0);
_sixel_overwrite_by_rectangle(term, start, col, rows_to_wrap_around, width, NULL, NULL);
_sixel_overwrite_by_rectangle(term, 0, col, height - rows_to_wrap_around, width, NULL, NULL);
} else
_sixel_overwrite_by_rectangle(term, start, col, height, width, NULL, NULL);
term_update_ascii_printer(term);
}
/* Row numbers are relative to grid offset */
void
sixel_overwrite_by_row(struct terminal *term, int _row, int col, int width)
{
xassert(col >= 0);
xassert(_row >= 0);
xassert(_row < term->rows);
xassert(col >= 0);
xassert(col < term->grid->num_cols);
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
if (col + width > term->grid->num_cols)
width = term->grid->num_cols - col;
const int row = (term->grid->offset + _row) & (term->grid->num_rows - 1);
const int scrollback_rel_row = grid_row_abs_to_sb(term->grid, term->rows, row);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
/* We should never generate scrollback wrapping sixels */
xassert(six_end >= six_start);
const int six_scrollback_rel_end =
grid_row_abs_to_sb(term->grid, term->rows, six_end);
if (six_scrollback_rel_end < scrollback_rel_row) {
/* All remaining sixels are *before* "our" row */
break;
}
if (row >= six_start && row <= six_end) {
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols - 1;
if ((col <= col_start && col + width - 1 >= col_start) ||
(col <= col_end && col + width - 1 >= col_end) ||
(col >= col_start && col + width - 1 <= col_end))
{
struct sixel to_be_erased = *six;
tll_remove(term->grid->sixel_images, it);
sixel_overwrite(term, &to_be_erased, row, col, 1, width, NULL, NULL);
sixel_erase(term, &to_be_erased);
}
}
}
term_update_ascii_printer(term);
}
void
sixel_overwrite_at_cursor(struct terminal *term, int width)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
sixel_overwrite_by_row(
term, term->grid->cursor.point.row, term->grid->cursor.point.col, width);
}
void
sixel_cell_size_changed(struct terminal *term)
{
tll_foreach(term->normal.sixel_images, it)
sixel_invalidate_cache(&it->item);
tll_foreach(term->alt.sixel_images, it)
sixel_invalidate_cache(&it->item);
}
void
sixel_sync_cache(const struct terminal *term, struct sixel *six)
{
if (six->pix != NULL) {
#if defined(_DEBUG)
if (six->cell_width == term->cell_width &&
six->cell_height == term->cell_height)
{
xassert(six->pix == six->original.pix);
xassert(six->width == six->original.width);
xassert(six->height == six->original.height);
xassert(six->scaled.data == NULL);
xassert(six->scaled.pix == NULL);
xassert(six->scaled.width < 0);
xassert(six->scaled.height < 0);
} else {
xassert(six->pix == six->scaled.pix);
xassert(six->width == six->scaled.width);
xassert(six->height == six->scaled.height);
xassert(six->scaled.data != NULL);
xassert(six->scaled.pix != NULL);
/* TODO: check ratio */
xassert(six->scaled.width >= 0);
xassert(six->scaled.height >= 0);
}
#endif
return;
}
/* Cache should be invalid */
xassert(six->scaled.data == NULL);
xassert(six->scaled.pix == NULL);
xassert(six->scaled.width < 0);
xassert(six->scaled.height < 0);
if (six->cell_width == term->cell_width &&
six->cell_height == term->cell_height)
{
six->pix = six->original.pix;
six->width = six->original.width;
six->height = six->original.height;
} else {
const double width_ratio = (double)term->cell_width / six->cell_width;
const double height_ratio = (double)term->cell_height / six->cell_height;
struct pixman_f_transform scale;
pixman_f_transform_init_scale(
&scale, 1. / width_ratio, 1. / height_ratio);
struct pixman_transform _scale;
pixman_transform_from_pixman_f_transform(&_scale, &scale);
pixman_image_set_transform(six->original.pix, &_scale);
pixman_image_set_filter(six->original.pix, PIXMAN_FILTER_BILINEAR, NULL, 0);
int scaled_width = (double)six->original.width * width_ratio;
int scaled_height = (double)six->original.height * height_ratio;
int scaled_stride = scaled_width * sizeof(uint32_t);
LOG_DBG("scaling sixel: %dx%d -> %dx%d",
six->original.width, six->original.height,
scaled_width, scaled_height);
uint8_t *scaled_data = xmalloc(scaled_height * scaled_stride);
pixman_image_t *scaled_pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8, scaled_width, scaled_height,
(uint32_t *)scaled_data, scaled_stride);
pixman_image_composite32(
PIXMAN_OP_SRC, six->original.pix, NULL, scaled_pix, 0, 0, 0, 0,
0, 0, scaled_width, scaled_height);
pixman_image_set_transform(six->original.pix, NULL);
six->scaled.data = scaled_data;
six->scaled.pix = six->pix = scaled_pix;
six->scaled.width = six->width = scaled_width;
six->scaled.height = six->height = scaled_height;
}
}
void
sixel_reflow_grid(struct terminal *term, struct grid *grid)
{
/* Meh - the sixel functions we call use term->grid... */
struct grid *active_grid = term->grid;
term->grid = grid;
/* Need the "real" list to be empty from the beginning */
tll(struct sixel) copy = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(copy, it->item);
tll_free(grid->sixel_images);
tll_rforeach(copy, it) {
struct sixel *six = &it->item;
int start = six->pos.row;
int end = (start + six->rows - 1) & (grid->num_rows - 1);
if (end < start) {
/* Crosses scrollback wrap-around */
/* TODO: split image */
sixel_destroy(six);
continue;
}
if (six->rows > grid->num_rows) {
/* Image too large */
/* TODO: keep bottom part? */
sixel_destroy(six);
continue;
}
/* Drop sixels that now cross the current scrollback end
* border. This is similar to a sixel that have been
* scrolled out */
/* TODO: should be possible to optimize this */
bool sixel_destroyed = false;
int last_row = -1;
for (int j = 0; j < six->rows; j++) {
int row_no = grid_row_abs_to_sb(
term->grid, term->rows, six->pos.row + j);
if (last_row != -1 && last_row >= row_no) {
sixel_destroy(six);
sixel_destroyed = true;
break;
}
last_row = row_no;
}
if (sixel_destroyed) {
LOG_WARN("destroyed sixel that now crossed history");
continue;
}
/* Sixels that didn't overlap may now do so, which isn't
* allowed of course */
_sixel_overwrite_by_rectangle(
term, six->pos.row, six->pos.col, six->rows, six->cols,
&it->item.original.pix, &it->item.opaque);
if (it->item.original.data != pixman_image_get_data(it->item.original.pix)) {
it->item.original.data = pixman_image_get_data(it->item.original.pix);
it->item.original.width = pixman_image_get_width(it->item.original.pix);
it->item.original.height = pixman_image_get_height(it->item.original.pix);
it->item.cols = (it->item.original.width + it->item.cell_width - 1) / it->item.cell_width;
it->item.rows = (it->item.original.height + it->item.cell_height - 1) / it->item.cell_height;
sixel_invalidate_cache(&it->item);
}
sixel_insert(term, it->item);
}
tll_free(copy);
term->grid = active_grid;
}
void
sixel_reflow(struct terminal *term)
{
for (size_t i = 0; i < 2; i++) {
struct grid *grid = i == 0 ? &term->normal : &term->alt;
sixel_reflow_grid(term, grid);
}
}
void
sixel_unhook(struct terminal *term)
{
int pixel_row_idx = 0;
int pixel_rows_left = term->sixel.image.height;
const int stride = term->sixel.image.width * sizeof(uint32_t);
/*
* When sixel scrolling is enabled (the default), sixels behave
* pretty much like normal output; the sixel starts at the current
* cursor position and the cursor is moved to a point after the
* sixel.
*
* Furthermore, if the sixel reaches the bottom of the scrolling
* region, the terminal content is scrolled.
*
* When scrolling is disabled, sixels always start at (0,0), the
* cursor is not moved at all, and the terminal content never
* scrolls.
*/
const bool do_scroll = term->sixel.scrolling;
/* Number of rows we're allowed to use.
*
* When scrolling is enabled, we always allow the entire sixel to
* be emitted.
*
* When disabled, only the number of screen rows may be used. */
int rows_avail = do_scroll
? (term->sixel.image.height + term->cell_height - 1) / term->cell_height
: term->scroll_region.end;
/* Initial sixel coordinates */
int start_row = do_scroll ? term->grid->cursor.point.row : 0;
const int start_col = do_scroll ? term->grid->cursor.point.col : 0;
/* Total number of rows needed by image */
const int rows_needed =
(term->sixel.image.height + term->cell_height - 1) / term->cell_height;
bool free_image_data = true;
/* We do not allow sixels to cross the scrollback wrap-around, as
* this makes intersection calculations much more complicated */
while (pixel_rows_left > 0 &&
rows_avail > 0 &&
rows_needed <= term->grid->num_rows)
{
const int cur_row = (term->grid->offset + start_row) & (term->grid->num_rows - 1);
const int rows_left_until_wrap_around = term->grid->num_rows - cur_row;
const int usable_rows = min(rows_avail, rows_left_until_wrap_around);
const int pixel_rows_avail = usable_rows * term->cell_height;
const int width = term->sixel.image.width;
const int height = min(pixel_rows_left, pixel_rows_avail);
uint32_t *img_data;
if (pixel_row_idx == 0 && height == pixel_rows_left) {
/* Entire image will be emitted as a single chunk - reuse
* the source buffer */
img_data = term->sixel.image.data;
free_image_data = false;
} else {
xassert(free_image_data);
img_data = xmalloc(height * stride);
memcpy(
img_data,
&((uint8_t *)term->sixel.image.data)[pixel_row_idx * stride],
height * stride);
}
struct sixel image = {
.pix = NULL,
.width = -1,
.height = -1,
.rows = (height + term->cell_height - 1) / term->cell_height,
.cols = (width + term->cell_width - 1) / term->cell_width,
.pos = (struct coord){start_col, cur_row},
.opaque = !term->sixel.transparent_bg,
.cell_width = term->cell_width,
.cell_height = term->cell_height,
.original = {
.data = img_data,
.pix = NULL,
.width = width,
.height = height,
},
.scaled = {
.data = NULL,
.pix = NULL,
.width = -1,
.height = -1,
},
};
xassert(image.rows <= term->grid->num_rows);
xassert(image.pos.row + image.rows - 1 < term->grid->num_rows);
LOG_DBG("generating %s %dx%d pixman image at %d-%d",
image.opaque ? "opaque" : "transparent",
image.original.width, image.original.height,
image.pos.row, image.pos.row + image.rows);
image.original.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8, image.original.width, image.original.height,
img_data, stride);
pixel_row_idx += height;
pixel_rows_left -= height;
rows_avail -= image.rows;
if (do_scroll) {
/*
* Linefeeds - always one less than the number of rows
* occupied by the image.
*
* Unless this is *not* the last chunk. In that case,
* linefeed past the chunk, so that the next chunk
* "starts" at a "new" row.
*/
const int linefeed_count = rows_avail == 0
? max(0, image.rows - 1)
: image.rows;
xassert(rows_avail == 0 ||
image.original.height % term->cell_height == 0);
for (size_t i = 0; i < linefeed_count; i++)
term_linefeed(term);
/* Position text cursor if this is the last image chunk */
if (rows_avail == 0) {
int row = term->grid->cursor.point.row;
/*
* Position the text cursor based on the **upper**
* pixel, of the last sixel.
*
* In most cases, that'll end up being the very last
* row of the sixel (which we're already at, thanks to
* the linefeeds). But for some combinations of font
* and image sizes, the final cursor position is
* higher up.
*/
const int sixel_row_height = 6 * term->sixel.pan;
const int sixel_rows = (image.original.height + sixel_row_height - 1) / sixel_row_height;
const int upper_pixel_last_sixel = (sixel_rows - 1) * sixel_row_height;
const int term_rows = (upper_pixel_last_sixel + term->cell_height - 1) / term->cell_height;
xassert(term_rows <= image.rows);
row -= (image.rows - term_rows);
term_cursor_to(
term,
max(0, row),
(term->sixel.cursor_right_of_graphics
? min(image.pos.col + image.cols, term->cols - 1)
: image.pos.col));
}
}
/* Dirty touched cells, and scroll terminal content if necessary */
for (size_t i = 0; i < image.rows; i++) {
struct row *row = term->grid->rows[cur_row + i];
row->dirty = true;
for (int col = image.pos.col;
col < min(image.pos.col + image.cols, term->cols);
col++)
{
row->cells[col].attrs.clean = 0;
}
}
_sixel_overwrite_by_rectangle(
term, image.pos.row, image.pos.col, image.rows, image.cols,
&image.original.pix, &image.opaque);
if (image.original.data != pixman_image_get_data(image.original.pix)) {
image.original.data = pixman_image_get_data(image.original.pix);
image.original.width = pixman_image_get_width(image.original.pix);
image.original.height = pixman_image_get_height(image.original.pix);
image.cols = (image.original.width + image.cell_width - 1) / image.cell_width;
image.rows = (image.original.height + image.cell_height - 1) / image.cell_height;
sixel_invalidate_cache(&image);
}
sixel_insert(term, image);
if (do_scroll)
start_row = term->grid->cursor.point.row;
else
start_row -= image.rows;
}
if (free_image_data)
free(term->sixel.image.data);
term->sixel.image.data = NULL;
term->sixel.image.p = NULL;
term->sixel.image.width = 0;
term->sixel.image.height = 0;
term->sixel.image.alloc_height = 0;
term->sixel.pos = (struct coord){0, 0};
free(term->sixel.private_palette);
term->sixel.private_palette = NULL;
LOG_DBG("you now have %zu sixels in current grid",
tll_length(term->grid->sixel_images));
term_update_ascii_printer(term);
render_refresh(term);
}
static void
resize_horizontally(struct terminal *term, int new_width)
{
if (likely(term->sixel.size_locked))
return;
if (unlikely(new_width > term->sixel.max_width)) {
LOG_WARN("maximum image dimensions exceeded, truncating");
new_width = term->sixel.max_width;
}
if (unlikely(term->sixel.image.width == new_width))
return;
const int sixel_row_height = 6 * term->sixel.pan;
uint32_t *old_data = term->sixel.image.data;
const int old_width = term->sixel.image.width;
int height;
if (unlikely(term->sixel.image.height == 0)) {
/* Lazy initialize height on first printed sixel */
xassert(old_width == 0);
term->sixel.image.height = height = sixel_row_height;
} else
height = term->sixel.image.height;
LOG_DBG("resizing image horizontally: %dx(%d) -> %dx(%d)",
term->sixel.image.width, term->sixel.image.height,
new_width, height);
int alloc_height = (height + sixel_row_height - 1) / sixel_row_height * sixel_row_height;
xassert(new_width > 0);
xassert(alloc_height > 0);
/* Width (and thus stride) change - need to allocate a new buffer */
uint32_t *new_data = xmalloc(new_width * alloc_height * sizeof(uint32_t));
uint32_t bg = term->sixel.default_bg;
/* Copy old rows, and initialize new columns to background color */
for (int r = 0; r < height; r++) {
memcpy(&new_data[r * new_width],
&old_data[r * old_width],
old_width * sizeof(uint32_t));
for (int c = old_width; c < new_width; c++)
new_data[r * new_width + c] = bg;
}
free(old_data);
term->sixel.image.data = new_data;
term->sixel.image.width = new_width;
const int ofs = term->sixel.pos.row * new_width + term->sixel.pos.col;
term->sixel.image.p = &term->sixel.image.data[ofs];
}
static bool
resize_vertically(struct terminal *term, int new_height)
{
LOG_DBG("resizing image vertically: (%d)x%d -> (%d)x%d",
term->sixel.image.width, term->sixel.image.height,
term->sixel.image.width, new_height);
if (likely(term->sixel.size_locked))
return false;
if (unlikely(new_height > term->sixel.max_height)) {
LOG_WARN("maximum image dimensions reached");
return false;
}
uint32_t *old_data = term->sixel.image.data;
const int width = term->sixel.image.width;
const int old_height = term->sixel.image.height;
const int sixel_row_height = 6 * term->sixel.pan;
int alloc_height = (new_height + sixel_row_height - 1) / sixel_row_height * sixel_row_height;
xassert(new_height > 0);
if (unlikely(width == 0)) {
xassert(term->sixel.image.data == NULL);
term->sixel.image.height = new_height;
return true;
}
uint32_t *new_data = realloc(
old_data, width * alloc_height * sizeof(uint32_t));
if (new_data == NULL) {
LOG_ERRNO("failed to reallocate sixel image buffer");
return false;
}
uint32_t bg = term->sixel.default_bg;
/* Initialize new rows to background color */
for (int r = old_height; r < new_height; r++) {
for (int c = 0; c < width; c++)
new_data[r * width + c] = bg;
}
term->sixel.image.height = new_height;
const int ofs =
term->sixel.pos.row * term->sixel.image.width + term->sixel.pos.col;
term->sixel.image.data = new_data;
term->sixel.image.p = &term->sixel.image.data[ofs];
return true;
}
static bool
resize(struct terminal *term, int new_width, int new_height)
{
LOG_DBG("resizing image: %dx%d -> %dx%d",
term->sixel.image.width, term->sixel.image.height,
new_width, new_height);
if (unlikely(new_width > term->sixel.max_width)) {
LOG_WARN("maximum image width exceeded, truncating");
new_width = term->sixel.max_width;
}
if (unlikely(new_height > term->sixel.max_height)) {
LOG_WARN("maximum image height exceeded, truncating");
new_height = term->sixel.max_height;
}
uint32_t *old_data = term->sixel.image.data;
const int old_width = term->sixel.image.width;
const int old_height = term->sixel.image.height;
if (unlikely(old_width == new_width && old_height == new_height))
return true;
const int sixel_row_height = 6 * term->sixel.pan;
int alloc_new_width = new_width;
int alloc_new_height = (new_height + sixel_row_height - 1) / sixel_row_height * sixel_row_height;
xassert(alloc_new_height >= new_height);
xassert(alloc_new_height - new_height < sixel_row_height);
uint32_t *new_data = NULL;
uint32_t bg = term->sixel.default_bg;
if (new_width == old_width) {
/* Width (and thus stride) is the same, so we can simply
* re-alloc the existing buffer */
new_data = realloc(old_data, alloc_new_width * alloc_new_height * sizeof(uint32_t));
if (new_data == NULL) {
LOG_ERRNO("failed to reallocate sixel image buffer");
return false;
}
xassert(new_height > old_height);
} else {
/* Width (and thus stride) change - need to allocate a new buffer */
xassert(new_width > old_width);
new_data = xmalloc(alloc_new_width * alloc_new_height * sizeof(uint32_t));
/* Copy old rows, and initialize new columns to background color */
for (int r = 0; r < min(old_height, new_height); r++) {
memcpy(&new_data[r * new_width], &old_data[r * old_width], old_width * sizeof(uint32_t));
for (int c = old_width; c < new_width; c++)
new_data[r * new_width + c] = bg;
}
free(old_data);
}
/* Initialize new rows to background color */
for (int r = old_height; r < new_height; r++) {
for (int c = 0; c < new_width; c++)
new_data[r * new_width + c] = bg;
}
xassert(new_data != NULL);
term->sixel.image.data = new_data;
term->sixel.image.width = new_width;
term->sixel.image.height = new_height;
term->sixel.image.p = &term->sixel.image.data[term->sixel.pos.row * new_width + term->sixel.pos.col];
term->sixel.image.alloc_height = alloc_new_height;
return true;
}
static void
sixel_add_generic(struct terminal *term, uint32_t *data, int stride, uint32_t color,
uint8_t sixel)
{
xassert(term->sixel.pos.col < term->sixel.image.width);
xassert(term->sixel.pos.row < term->sixel.image.height);
const int pan = term->sixel.pan;
for (int i = 0; i < 6; i++, sixel >>= 1) {
if (sixel & 1) {
for (int r = 0; r < pan; r++, data += stride)
*data = color;
} else
data += stride * pan;
}
xassert(sixel == 0);
}
static void ALWAYS_INLINE inline
sixel_add_ar_11(struct terminal *term, uint32_t *data, int stride, uint32_t color,
uint8_t sixel)
{
xassert(term->sixel.pos.col < term->sixel.image.width);
xassert(term->sixel.pos.row < term->sixel.image.height);
xassert(term->sixel.pan == 1);
if (sixel & 0x01)
*data = color;
data += stride;
if (sixel & 0x02)
*data = color;
data += stride;
if (sixel & 0x04)
*data = color;
data += stride;
if (sixel & 0x08)
*data = color;
data += stride;
if (sixel & 0x10)
*data = color;
data += stride;
if (sixel & 0x20)
*data = color;
}
static void
sixel_add_many_generic(struct terminal *term, uint8_t c, unsigned count)
{
int col = term->sixel.pos.col;
int width = term->sixel.image.width;
count *= term->sixel.pad;
if (unlikely(col + count - 1 >= width)) {
resize_horizontally(term, col + count);
width = term->sixel.image.width;
count = min(count, max(width - col, 0));
}
uint32_t color = term->sixel.color;
uint32_t *data = term->sixel.image.p;
uint32_t *end = data + count;
for (; data < end; data++)
sixel_add_generic(term, data, width, color, c);
term->sixel.pos.col = col + count;
term->sixel.image.p = end;
}
static void ALWAYS_INLINE inline
sixel_add_one_ar_11(struct terminal *term, uint8_t c)
{
xassert(term->sixel.pan == 1);
xassert(term->sixel.pad == 1);
int col = term->sixel.pos.col;
int width = term->sixel.image.width;
if (unlikely(col >= width)) {
resize_horizontally(term, col + count);
width = term->sixel.image.width;
count = min(count, max(width - col, 0));
if (unlikely(count == 0))
return;
}
sixel_add_ar_11(term, term->sixel.image.p, width, term->sixel.color, c);
term->sixel.pos.col += 1;
term->sixel.image.p += 1;
}
static void
sixel_add_many_ar_11(struct terminal *term, uint8_t c, unsigned count)
{
xassert(term->sixel.pan == 1);
xassert(term->sixel.pad == 1);
int col = term->sixel.pos.col;
int width = term->sixel.image.width;
if (unlikely(col + count - 1 >= width)) {
resize_horizontally(term, col + count);
width = term->sixel.image.width;
count = min(count, max(width - col, 0));
}
uint32_t color = term->sixel.color;
uint32_t *data = term->sixel.image.p;
uint32_t *end = data + count;
for (; data < end; data++)
sixel_add_ar_11(term, data, width, color, c);
term->sixel.pos.col += count;
term->sixel.image.p = end;
}
IGNORE_WARNING("-Wpedantic")
static void
decsixel_generic(struct terminal *term, uint8_t c)
{
switch (c) {
case '"':
term->sixel.state = SIXEL_DECGRA;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '!':
term->sixel.state = SIXEL_DECGRI;
term->sixel.param = 0;
term->sixel.param_idx = 0;
term->sixel.repeat_count = 1;
break;
case '#':
term->sixel.state = SIXEL_DECGCI;
term->sixel.color_idx = 0;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '$':
if (likely(term->sixel.pos.col <= term->sixel.max_width)) {
/*
* We set, and keep, 'col' outside the image boundary when
* we've reached the maximum image height, to avoid also
* having to check the row vs image height in the common
* path in sixel_add().
*/
term->sixel.pos.col = 0;
term->sixel.image.p = &term->sixel.image.data[term->sixel.pos.row * term->sixel.image.width];
}
break;
case '-':
term->sixel.pos.row += 6 * term->sixel.pan;
term->sixel.pos.col = 0;
term->sixel.image.p = &term->sixel.image.data[term->sixel.pos.row * term->sixel.image.width];
if (unlikely(term->sixel.pos.row >= term->sixel.image.alloc_height)) {
if (!resize_vertically(term, term->sixel.pos.row + 6 * term->sixel.pan))
term->sixel.pos.col = term->sixel.max_width + 1 * term->sixel.pad;
}
break;
case '?' ... '~':
sixel_add_many_generic(term, c - 63, 1);
break;
case ' ':
case '\n':
case '\r':
break;
default:
LOG_WARN("invalid sixel character: '%c' at idx=%zu", c, count);
break;
}
}
UNIGNORE_WARNINGS
static void
decsixel_ar_11(struct terminal *term, uint8_t c)
{
if (likely(c >= '?' && c <= '~'))
sixel_add_one_ar_11(term, c - 63);
else
decsixel_generic(term, c);
}
static void
decgra(struct terminal *term, uint8_t c)
{
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
unsigned pan = nparams > 0 ? term->sixel.params[0] : 0;
unsigned pad = nparams > 1 ? term->sixel.params[1] : 0;
unsigned ph = nparams > 2 ? term->sixel.params[2] : 0;
unsigned pv = nparams > 3 ? term->sixel.params[3] : 0;
pan = pan > 0 ? pan : 1;
pad = pad > 0 ? pad : 1;
pv *= pan;
ph *= pad;
term->sixel.pan = pan;
term->sixel.pad = pad;
LOG_DBG("pan=%u, pad=%u (aspect ratio = %d:%d), size=%ux%u",
pan, pad, pan, pad, ph, pv);
if (ph >= term->sixel.image.height && pv >= term->sixel.image.width &&
ph <= term->sixel.max_height && pv <= term->sixel.max_width)
{
resize(term, ph, pv);
term->sixel.size_locked = true;
}
term->sixel.state = SIXEL_DECSIXEL;
/* Update DCS put handler, since pan/pad may have changed */
term->vt.dcs.put_handler = pan == 1 && pad == 1
? &sixel_put_ar_11
: &sixel_put_generic;
if (likely(pan == 1 && pad == 1))
decsixel_ar_11(term, c);
else
decsixel_generic(term, c);
break;
}
}
}
IGNORE_WARNING("-Wpedantic")
static void
decgri_generic(struct terminal *term, uint8_t c)
{
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
unsigned param = term->sixel.param;
param *= 10;
param += c - '0';
term->sixel.repeat_count = term->sixel.param = param;
break;
}
case '?' ... '~': {
unsigned count = term->sixel.repeat_count;
if (unlikely(count == 0)) {
count = 1;
}
sixel_add_many_generic(term, c - 63, count);
term->sixel.state = SIXEL_DECSIXEL;
break;
}
default:
term->sixel.state = SIXEL_DECSIXEL;
term->vt.dcs.put_handler(term, c);
break;
}
}
UNIGNORE_WARNINGS
static void
decgri_ar_11(struct terminal *term, uint8_t c)
{
if (likely(c >= '?' && c <= '~')) {
unsigned count = term->sixel.repeat_count;
if (unlikely(count == 0)) {
count = 1;
}
sixel_add_many_ar_11(term, c - 63, count);
term->sixel.state = SIXEL_DECSIXEL;
} else
decgri_generic(term, c);
}
static void
decgci(struct terminal *term, uint8_t c)
{
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
if (nparams > 0)
term->sixel.color_idx = min(term->sixel.params[0], term->sixel.palette_size - 1);
if (nparams > 4) {
unsigned format = term->sixel.params[1];
int c1 = term->sixel.params[2];
int c2 = term->sixel.params[3];
int c3 = term->sixel.params[4];
switch (format) {
case 1: { /* HLS */
int hue = min(c1, 360);
int lum = min(c2, 100);
int sat = min(c3, 100);
/*
* Sixel's HLS use the following primary color hues:
* blue: 0°
* red: 120°
* green: 240°
*
* While "standard" HSL uses:
* red: 0°
* green: 120°
* blue: 240°
*/
hue = (hue + 240) % 360;
uint32_t rgb = hsl_to_rgb(hue, sat, lum);
LOG_DBG("setting palette #%d = HLS %hhu/%hhu/%hhu (0x%06x)",
term->sixel.color_idx, hue, lum, sat, rgb);
term->sixel.palette[term->sixel.color_idx] = 0xffu << 24 | rgb;
break;
}
case 2: { /* RGB */
uint8_t r = 255 * min(c1, 100) / 100;
uint8_t g = 255 * min(c2, 100) / 100;
uint8_t b = 255 * min(c3, 100) / 100;
LOG_DBG("setting palette #%d = RGB %hhu/%hhu/%hhu",
term->sixel.color_idx, r, g, b);
term->sixel.palette[term->sixel.color_idx] =
0xffu << 24 | r << 16 | g << 8 | b;
break;
}
}
} else
term->sixel.color = term->sixel.palette[term->sixel.color_idx];
term->sixel.state = SIXEL_DECSIXEL;
if (likely(term->sixel.pan == 1 && term->sixel.pad == 1))
decsixel_ar_11(term, c);
else
decsixel_generic(term, c);
break;
}
}
}
static void
sixel_put_generic(struct terminal *term, uint8_t c)
{
switch (term->sixel.state) {
case SIXEL_DECSIXEL: decsixel_generic(term, c); break;
case SIXEL_DECGRA: decgra(term, c); break;
case SIXEL_DECGRI: decgri_generic(term, c); break;
case SIXEL_DECGCI: decgci(term, c); break;
}
count++;
}
static void
sixel_put_ar_11(struct terminal *term, uint8_t c)
{
switch (term->sixel.state) {
case SIXEL_DECSIXEL: decsixel_ar_11(term, c); break;
case SIXEL_DECGRA: decgra(term, c); break;
case SIXEL_DECGRI: decgri_ar_11(term, c); break;
case SIXEL_DECGCI: decgci(term, c); break;
}
count++;
}
void
sixel_colors_report_current(struct terminal *term)
{
char reply[24];
size_t n = xsnprintf(reply, sizeof(reply), "\033[?1;0;%uS", term->sixel.palette_size);
term_to_slave(term, reply, n);
LOG_DBG("query response for current color count: %u", term->sixel.palette_size);
}
void
sixel_colors_reset(struct terminal *term)
{
LOG_DBG("sixel palette size reset to %u", SIXEL_MAX_COLORS);
free(term->sixel.palette);
term->sixel.palette = NULL;
term->sixel.palette_size = SIXEL_MAX_COLORS;
sixel_colors_report_current(term);
}
void
sixel_colors_set(struct terminal *term, unsigned count)
{
unsigned new_palette_size = min(max(2, count), SIXEL_MAX_COLORS);
LOG_DBG("sixel palette size set to %u", new_palette_size);
free(term->sixel.private_palette);
free(term->sixel.shared_palette);
term->sixel.private_palette = NULL;
term->sixel.shared_palette = NULL;
term->sixel.palette_size = new_palette_size;
sixel_colors_report_current(term);
}
void
sixel_colors_report_max(struct terminal *term)
{
char reply[24];
size_t n = xsnprintf(reply, sizeof(reply), "\033[?1;0;%uS", SIXEL_MAX_COLORS);
term_to_slave(term, reply, n);
LOG_DBG("query response for max color count: %u", SIXEL_MAX_COLORS);
}
void
sixel_geometry_report_current(struct terminal *term)
{
char reply[64];
size_t n = xsnprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS",
min(term->cols * term->cell_width, term->sixel.max_width),
min(term->rows * term->cell_height, term->sixel.max_height));
term_to_slave(term, reply, n);
LOG_DBG("query response for current sixel geometry: %ux%u",
term->sixel.max_width, term->sixel.max_height);
}
void
sixel_geometry_reset(struct terminal *term)
{
LOG_DBG("sixel geometry reset to %ux%u", SIXEL_MAX_WIDTH, SIXEL_MAX_HEIGHT);
term->sixel.max_width = SIXEL_MAX_WIDTH;
term->sixel.max_height = SIXEL_MAX_HEIGHT;
sixel_geometry_report_current(term);
}
void
sixel_geometry_set(struct terminal *term, unsigned width, unsigned height)
{
LOG_DBG("sixel geometry set to %ux%u", width, height);
term->sixel.max_width = width;
term->sixel.max_height = height;
sixel_geometry_report_current(term);
}
void
sixel_geometry_report_max(struct terminal *term)
{
unsigned max_width = term->sixel.max_width;
unsigned max_height = term->sixel.max_height;
char reply[64];
size_t n = xsnprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS", max_width, max_height);
term_to_slave(term, reply, n);
LOG_DBG("query response for max sixel geometry: %ux%u",
max_width, max_height);
}