foot/sixel.c
Daniel Eklöf e896c2fa55
sixel: refactor handling of wrap-around delete- and split regions
Handle these on a higher abstraction level. The low level functions
that detect sixel intersections now assume the specified rectangle (or
line region) does *not* cross the wrap-around.

This is ensured by detecting a wrap-around region before hand, and
splitting it up into two, non wrapping regions.
2020-06-27 13:56:13 +02:00

821 lines
25 KiB
C

#include "sixel.h"
#include <string.h>
#include <limits.h>
#define LOG_MODULE "sixel"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "render.h"
#include "sixel-hls.h"
#include "util.h"
static size_t count;
void
sixel_fini(struct terminal *term)
{
free(term->sixel.palette);
}
static uint32_t
color_with_alpha(const struct terminal *term, uint32_t color)
{
uint16_t alpha = color == term->colors.bg ? term->colors.alpha : 0xffff;
return (alpha / 256u) << 24 | color;
}
void
sixel_init(struct terminal *term)
{
assert(term->sixel.image.data == NULL);
assert(term->sixel.palette_size <= SIXEL_MAX_COLORS);
term->sixel.state = SIXEL_DECSIXEL;
term->sixel.pos = (struct coord){0, 0};
term->sixel.color_idx = 0;
term->sixel.max_col = 0;
term->sixel.param = 0;
term->sixel.param_idx = 0;
memset(term->sixel.params, 0, sizeof(term->sixel.params));
term->sixel.image.data = malloc(1 * 6 * sizeof(term->sixel.image.data[0]));
term->sixel.image.width = 1;
term->sixel.image.height = 6;
term->sixel.image.autosize = true;
if (term->sixel.palette == NULL) {
term->sixel.palette = calloc(
term->sixel.palette_size, sizeof(term->sixel.palette[0]));
}
for (size_t i = 0; i < 1 * 6; i++)
term->sixel.image.data[i] = color_with_alpha(term, term->colors.bg);
count = 0;
/* TODO: default palette */
}
void
sixel_destroy(struct sixel *sixel)
{
pixman_image_unref(sixel->pix);
free(sixel->data);
sixel->pix = NULL;
sixel->data = NULL;
}
static void
sixel_erase(struct terminal *term, struct sixel *sixel)
{
for (int i = 0; i < sixel->rows; i++) {
int r = (sixel->pos.row + i) & (term->grid->num_rows - 1);
struct row *row = term->grid->rows[r];
if (row == NULL) {
/* A resize/reflow may cause row to now be unallocated */
continue;
}
row->dirty = true;
for (int c = 0; c < term->grid->num_cols; c++)
row->cells[c].attrs.clean = 0;
}
sixel_destroy(sixel);
}
/* Row numbers are absolute */
static void
sixel_delete_at_point(struct terminal *term, int row, int col)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
bool wraps = six_end < six_start;
if ((!wraps && row >= six_start && row <= six_end) ||
(wraps && (row >= six_start || row <= six_end)))
{
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols;
if (col < 0 || (col >= col_start && col < col_end)) {
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
}
void
sixel_delete_at_row(struct terminal *term, int row)
{
sixel_delete_at_point(
term, (term->grid->offset + row) & (term->grid->num_rows - 1), -1);
}
/* Row numbers are absolute */
static void
_sixel_delete_in_range(struct terminal *term, int start, int end)
{
assert(end >= start);
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
if (start == end)
return sixel_delete_at_point(term, start, -1);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
const bool six_wraps = six_end < six_start;
if ((!six_wraps &&
((start <= six_start && end >= six_start) || /* Crosses sixel start boundary */
(start <= six_end && end >= six_end) || /* Crosses sixel end boundary */
(start >= six_start && end <= six_end))) || /* Fully within sixel range */
(six_wraps &&
((start <= six_start && end >= six_start) ||
(start <= six_end && end >= six_end) ||
(start >= six_start || end <= six_end)))
)
{
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
void
sixel_delete_in_range(struct terminal *term, int _start, int _end)
{
assert(_end >= _start);
const int lines = _end - _start + 1;
const int start = (term->grid->offset + _start) & (term->grid->num_rows - 1);
const int end = (start + lines - 1) & (term->grid->num_rows - 1);
const bool wraps = end < start;
if (wraps) {
int rows_to_wrap_around = term->grid->num_rows - start;
assert(lines - rows_to_wrap_around > 0);
_sixel_delete_in_range(term, start, term->grid->num_rows);
_sixel_delete_in_range(term, 0, lines - rows_to_wrap_around);
} else
_sixel_delete_in_range(term, start, end);
}
static void
sixel_split(struct terminal *term, struct sixel *six,
int row, int col, int height, int width)
{
int rel_above = min(max(row - six->pos.row, 0), six->rows);
int rel_below = max(min(row + height - six->pos.row, six->rows), 0);
int rel_left = min(max(col - six->pos.col, 0), six->cols);
int rel_right = max(min(col + width - six->pos.col, six->cols), 0);
assert(rel_above >= 0);
assert(rel_below >= 0);
assert(rel_left >= 0);
assert(rel_right >= 0);
LOG_DBG("SPLIT: six (%p): %dx%d-%dx%d, %dx%d-%dx%d, rel: above=%d, below=%d, left=%d, right=%d",
six, six->pos.row, six->pos.col, six->rows, six->cols,
row, col, height, width,
rel_above, rel_below, rel_left, rel_right);
if (rel_above > 0) {
struct sixel above = {
.width = six->width,
.height = rel_above * term->cell_height,
.rows = rel_above,
.cols = six->cols,
.pos = six->pos,
};
above.data = malloc(above.width * above.height * sizeof(uint32_t));
memcpy(above.data, six->data, above.width * above.height * sizeof(uint32_t));
above.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
above.width, above.height,
above.data, above.width * sizeof(uint32_t));
tll_push_front(term->grid->sixel_images, above);
}
if (rel_below < six->rows) {
struct sixel below = {
.width = six->width,
.height = six->height - rel_below * term->cell_height,
.rows = six->rows - rel_below,
.cols = six->cols,
.pos = (struct coord){
six->pos.col,
(six->pos.row + rel_below) & (term->grid->num_rows - 1)},
};
below.data = malloc(below.width * below.height * sizeof(uint32_t));
memcpy(
below.data,
&((const uint32_t *)six->data)[rel_below * term->cell_height * six->width],
below.width * below.height * sizeof(uint32_t));
below.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
below.width, below.height,
below.data, below.width * sizeof(uint32_t));
tll_push_front(term->grid->sixel_images, below);
}
if (rel_left > 0) {
struct sixel left = {
.width = rel_left * term->cell_width,
.height = min(term->cell_height, six->height - rel_above * term->cell_height),
.rows = 1,
.cols = rel_left,
.pos = (struct coord){
six->pos.col,
(six->pos.row + rel_above) & (term->grid->num_rows - 1)},
};
left.data = malloc(left.width * left.height * sizeof(uint32_t));
for (size_t i = 0; i < term->cell_height; i++)
memcpy(
&((uint32_t *)left.data)[i * left.width],
&((const uint32_t *)six->data)[(rel_above * term->cell_height + i) * six->width],
left.width * sizeof(uint32_t));
left.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
left.width, left.height,
left.data, left.width * sizeof(uint32_t));
tll_push_front(term->grid->sixel_images, left);
}
if (rel_right < six->cols) {
struct sixel right = {
.width = six->width - rel_right * term->cell_width,
.height = min(term->cell_height, six->height - rel_above * term->cell_height),
.rows = 1,
.cols = six->cols - rel_right,
.pos = (struct coord){
six->pos.col + rel_right,
(six->pos.row + rel_above) & (term->grid->num_rows - 1)},
};
right.data = malloc(right.width * right.height * sizeof(uint32_t));
for (size_t i = 0; i < term->cell_height; i++)
memcpy(
&((uint32_t *)right.data)[i * right.width],
&((const uint32_t *)six->data)[(rel_above * term->cell_height + i) * six->width + rel_right * term->cell_width],
right.width * sizeof(uint32_t));
right.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
right.width, right.height,
right.data, right.width * sizeof(uint32_t));
tll_push_front(term->grid->sixel_images, right);
}
}
/* Row numbers are absolute */
static void
_sixel_split_by_rectangle(
struct terminal *term, int row, int col, int height, int width)
{
assert(row + height <= term->grid->num_rows);
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
/* We don't handle rectangle wrapping around */
assert(row + height <= term->grid->num_rows);
const int start = row;
const int end = row + height - 1;
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
const bool six_wraps = six_end < six_start; /* TODO: do not generate sixels that wrap around */
if ((!six_wraps &&
((start <= six_start && end >= six_start) || /* Crosses sixel start boundary */
(start <= six_end && end >= six_end) || /* Crosses sixel end boundary */
(start >= six_start && end <= six_end))) || /* Fully within sixel range */
(six_wraps &&
((start <= six_start && end >= six_start) ||
(start <= six_end && end >= six_end) ||
(start >= six_start || end <= six_end)))
)
{
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols - 1;
if ((col <= col_start && col + width - 1 >= col_start) ||
(col <= col_end && col + width - 1 >= col_end) ||
(col >= col_start && col + width - 1 <= col_end))
{
sixel_split(term, six, start, col, height, width);
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
}
static void
sixel_split_by_rectangle(
struct terminal *term, int _row, int col, int height, int width)
{
const int start = (term->grid->offset + _row) & (term->grid->num_rows - 1);
const int end = (start + height - 1) & (term->grid->num_rows - 1);
const bool wraps = end < start;
if (wraps) {
int rows_to_wrap_around = term->grid->num_rows - start;
assert(height - rows_to_wrap_around > 0);
_sixel_split_by_rectangle(term, start, col, rows_to_wrap_around, width);
_sixel_split_by_rectangle(term, 0, col, height - rows_to_wrap_around, width);
} else
_sixel_split_by_rectangle(term, start, col, height, width);
}
/* Row numbers are absolute */
static void
sixel_split_at_point(struct terminal *term, int row, int col)
{
assert(col >= 0);
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
bool wraps = six_end < six_start;
if ((!wraps && row >= six_start && row <= six_end) ||
(wraps && (row >= six_start || row <= six_end)))
{
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols;
if (col >= col_start && col < col_end) {
sixel_split(term, six, row, col, 1, 1);
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
}
void
sixel_split_at_cursor(struct terminal *term)
{
sixel_split_at_point(
term,
(term->grid->offset + term->grid->cursor.point.row) & (term->grid->num_rows - 1),
term->grid->cursor.point.col);
}
void
sixel_unhook(struct terminal *term)
{
struct sixel image = {
.data = term->sixel.image.data,
.width = term->sixel.image.width,
.height = term->sixel.image.height,
.rows = (term->sixel.image.height + term->cell_height - 1) / term->cell_height,
.cols = (term->sixel.image.width + term->cell_width - 1) / term->cell_width,
.pos = (struct coord){
term->grid->cursor.point.col,
(term->grid->offset + term->grid->cursor.point.row) & (term->grid->num_rows - 1)},
};
sixel_split_by_rectangle(
term, term->grid->cursor.point.row, image.pos.col, image.rows, image.cols);
LOG_DBG("generating %dx%d pixman image at %d-%d", image.width, image.height, image.pos.row, image.pos.row + image.rows);
image.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
image.width, image.height,
term->sixel.image.data,
term->sixel.image.width * sizeof(uint32_t));
term->sixel.image.data = NULL;
term->sixel.image.width = 0;
term->sixel.image.height = 0;
term->sixel.max_col = 0;
term->sixel.pos = (struct coord){0, 0};
for (size_t i = 0; i < image.rows; i++)
term_linefeed(term);
term_formfeed(term);
render_refresh(term);
tll_push_back(term->grid->sixel_images, image);
}
static unsigned
max_width(const struct terminal *term)
{
/* foot extension - treat 0 to mean current terminal size */
return term->sixel.max_width == 0
? term->cols * term->cell_width
: term->sixel.max_width;
}
static unsigned
max_height(const struct terminal *term)
{
/* foot extension - treat 0 to mean current terminal size */
return term->sixel.max_height == 0
? term->rows * term->cell_height
: term->sixel.max_height;
}
static bool
resize(struct terminal *term, int new_width, int new_height)
{
if (!term->sixel.image.autosize)
return false;
LOG_DBG("resizing image: %dx%d -> %dx%d",
term->sixel.image.width, term->sixel.image.height,
new_width, new_height);
uint32_t *old_data = term->sixel.image.data;
const int old_width = term->sixel.image.width;
const int old_height = term->sixel.image.height;
int alloc_new_width = new_width;
int alloc_new_height = (new_height + 6 - 1) / 6 * 6;
assert(alloc_new_height >= new_height);
assert(alloc_new_height - new_height < 6);
assert(new_width >= old_width);
assert(new_height >= old_height);
uint32_t *new_data = NULL;
if (new_width == old_width) {
/* Width (and thus stride) is the same, so we can simply
* re-alloc the existing buffer */
new_data = realloc(old_data, alloc_new_width * alloc_new_height * sizeof(uint32_t));
if (new_data == NULL) {
LOG_ERRNO("failed to reallocate sixel image buffer");
return false;
}
assert(new_height > old_height);
} else {
/* Width (and thus stride) change - need to allocate a new buffer */
assert(new_width > old_width);
new_data = malloc(alloc_new_width * alloc_new_height * sizeof(uint32_t));
/* Copy old rows, and initialize new columns to background color */
for (int r = 0; r < old_height; r++) {
memcpy(&new_data[r * new_width], &old_data[r * old_width], old_width * sizeof(uint32_t));
for (int c = old_width; c < new_width; c++)
new_data[r * new_width + c] = color_with_alpha(term, term->colors.bg);
}
free(old_data);
}
/* Initialize new rows to background color */
for (int r = old_height; r < new_height; r++) {
for (int c = 0; c < new_width; c++)
new_data[r * new_width + c] = color_with_alpha(term, term->colors.bg);
}
assert(new_data != NULL);
term->sixel.image.data = new_data;
term->sixel.image.width = new_width;
term->sixel.image.height = new_height;
return true;
}
static void
sixel_add(struct terminal *term, uint32_t color, uint8_t sixel)
{
//LOG_DBG("adding sixel %02hhx using color 0x%06x", sixel, color);
if (term->sixel.pos.col >= max_width(term) ||
term->sixel.pos.row * 6 + 5 >= max_height(term))
{
return;
}
if (term->sixel.pos.col >= term->sixel.image.width ||
term->sixel.pos.row * 6 + 5 >= (term->sixel.image.height + 6 - 1) / 6 * 6)
{
int width = max(
term->sixel.image.width,
max(term->sixel.max_col, term->sixel.pos.col + 1));
int height = max(
term->sixel.image.height,
(term->sixel.pos.row + 1) * 6);
if (!resize(term, width, height))
return;
}
for (int i = 0; i < 6; i++, sixel >>= 1) {
if (sixel & 1) {
size_t pixel_row = term->sixel.pos.row * 6 + i;
size_t stride = term->sixel.image.width;
size_t idx = pixel_row * stride + term->sixel.pos.col;
term->sixel.image.data[idx] = color_with_alpha(term, color);
}
}
assert(sixel == 0);
term->sixel.pos.col++;
}
static void
decsixel(struct terminal *term, uint8_t c)
{
switch (c) {
case '"':
term->sixel.state = SIXEL_DECGRA;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '!':
term->sixel.state = SIXEL_DECGRI;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '#':
term->sixel.state = SIXEL_DECGCI;
term->sixel.color_idx = 0;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '$':
if (term->sixel.pos.col > term->sixel.max_col)
term->sixel.max_col = term->sixel.pos.col;
term->sixel.pos.col = 0;
break;
case '-':
if (term->sixel.pos.col > term->sixel.max_col)
term->sixel.max_col = term->sixel.pos.col;
term->sixel.pos.row++;
term->sixel.pos.col = 0;
break;
case '?'...'~':
sixel_add(term, term->sixel.palette[term->sixel.color_idx], c - 63);
break;
case ' ':
case '\n':
case '\r':
break;
default:
LOG_WARN("invalid sixel character: '%c' at idx=%zu", c, count);
break;
}
}
static void
decgra(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
unsigned pan = nparams > 0 ? term->sixel.params[0] : 0;
unsigned pad = nparams > 1 ? term->sixel.params[1] : 0;
unsigned ph = nparams > 2 ? term->sixel.params[2] : 0;
unsigned pv = nparams > 3 ? term->sixel.params[3] : 0;
pan = pan > 0 ? pan : 1;
pad = pad > 0 ? pad : 1;
LOG_DBG("pan=%u, pad=%u (aspect ratio = %u), size=%ux%u",
pan, pad, pan / pad, ph, pv);
if (ph >= term->sixel.image.height && pv >= term->sixel.image.width &&
ph <= max_height(term) && pv <= max_width(term))
{
if (resize(term, ph, pv))
term->sixel.image.autosize = false;
}
term->sixel.state = SIXEL_DECSIXEL;
sixel_put(term, c);
break;
}
}
}
static void
decgri(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
default:
//LOG_DBG("repeating '%c' %u times", c, term->sixel.param);
for (unsigned i = 0; i < term->sixel.param; i++)
decsixel(term, c);
term->sixel.state = SIXEL_DECSIXEL;
break;
}
}
static void
decgci(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
if (nparams > 0)
term->sixel.color_idx = min(term->sixel.params[0], term->sixel.palette_size - 1);
if (nparams > 4) {
unsigned format = term->sixel.params[1];
unsigned c1 = term->sixel.params[2];
unsigned c2 = term->sixel.params[3];
unsigned c3 = term->sixel.params[4];
switch (format) {
case 1: { /* HLS */
uint32_t rgb = hls_to_rgb(c1, c2, c3);
LOG_DBG("setting palette #%d = HLS %hhu/%hhu/%hhu (0x%06x)",
term->sixel.color_idx, c1, c2, c3, rgb);
term->sixel.palette[term->sixel.color_idx] = rgb;
break;
}
case 2: { /* RGB */
uint8_t r = 255 * c1 / 100;
uint8_t g = 255 * c2 / 100;
uint8_t b = 255 * c3 / 100;
LOG_DBG("setting palette #%d = RGB %hhu/%hhu/%hhu",
term->sixel.color_idx, r, g, b);
term->sixel.palette[term->sixel.color_idx] = r << 16 | g << 8 | b;
break;
}
}
}
term->sixel.state = SIXEL_DECSIXEL;
sixel_put(term, c);
break;
}
}
}
void
sixel_put(struct terminal *term, uint8_t c)
{
switch (term->sixel.state) {
case SIXEL_DECSIXEL: decsixel(term, c); break;
case SIXEL_DECGRA: decgra(term, c); break;
case SIXEL_DECGRI: decgri(term, c); break;
case SIXEL_DECGCI: decgci(term, c); break;
}
count++;
}
void
sixel_colors_report_current(struct terminal *term)
{
char reply[24];
snprintf(reply, sizeof(reply), "\033[?1;0;%uS", term->sixel.palette_size);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for current color count: %u", term->sixel.palette_size);
}
void
sixel_colors_reset(struct terminal *term)
{
LOG_DBG("sixel palette size reset to %u", SIXEL_MAX_COLORS);
free(term->sixel.palette);
term->sixel.palette = NULL;
term->sixel.palette_size = SIXEL_MAX_COLORS;
sixel_colors_report_current(term);
}
void
sixel_colors_set(struct terminal *term, unsigned count)
{
unsigned new_palette_size = min(max(2, count), SIXEL_MAX_COLORS);
LOG_DBG("sixel palette size set to %u", new_palette_size);
free(term->sixel.palette);
term->sixel.palette = NULL;
term->sixel.palette_size = new_palette_size;
sixel_colors_report_current(term);
}
void
sixel_colors_report_max(struct terminal *term)
{
char reply[24];
snprintf(reply, sizeof(reply), "\033[?1;0;%uS", SIXEL_MAX_COLORS);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for max color count: %u", SIXEL_MAX_COLORS);
}
void
sixel_geometry_report_current(struct terminal *term)
{
char reply[64];
snprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS",
max_width(term), max_height(term));
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for current sixel geometry: %ux%u",
max_width(term), max_height(term));
}
void
sixel_geometry_reset(struct terminal *term)
{
LOG_DBG("sixel geometry reset to %ux%u", max_width(term), max_height(term));
term->sixel.max_width = 0;
term->sixel.max_height = 0;
sixel_geometry_report_current(term);
}
void
sixel_geometry_set(struct terminal *term, unsigned width, unsigned height)
{
LOG_DBG("sixel geometry set to %ux%u", width, height);
term->sixel.max_width = width;
term->sixel.max_height = height;
sixel_geometry_report_current(term);
}
void
sixel_geometry_report_max(struct terminal *term)
{
unsigned max_width = term->cols * term->cell_width;
unsigned max_height = term->rows * term->cell_height;
char reply[64];
snprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS", max_width, max_height);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for max sixel geometry: %ux%u",
max_width, max_height);
}