foot/grid.c
Daniel Eklöf b4f666118f
grid: add abs-to-sb and sb-to-abs utility function
These functions convert row numbers between absolute coordinates and
“scrollback relative” coordinates.

Absolute row numbers can be used to index into the grid->rows[] array.

Scrollback relative numbers are ordered with the *oldest* row first,
and the *newest* row last. That is, in these coordinates, row 0 is the
*first* (oldest) row in the scrollback history, and row N is the
*last* (newest) row.

Scrollback relative numbers are used when we need to sort things after
their age, when determining if something has scrolled out, or when
limiting an operation to ensure we don’t go past the scrollback
wrap-around.
2022-04-25 19:57:18 +02:00

1310 lines
41 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "grid.h"
#include <stdlib.h>
#include <string.h>
#define LOG_MODULE "grid"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "debug.h"
#include "macros.h"
#include "sixel.h"
#include "stride.h"
#include "util.h"
#include "xmalloc.h"
#define TIME_REFLOW 0
/*
* “sb” (scrollback relative) coordinates
*
* The scrollback relative row number 0 is the *first*, and *oldest*
* row in the scrollback history (and thus the *first* row to be
* scrolled out). Thus, a higher number means further *down* in the
* scrollback, with the *highest* number being at the bottom of the
* screen, where new input appears.
*/
int
grid_row_abs_to_sb(const struct grid *grid, int screen_rows, int abs_row)
{
const int scrollback_start = grid->offset + screen_rows;
int rebased_row = abs_row - scrollback_start + grid->num_rows;
rebased_row &= grid->num_rows - 1;
return rebased_row;
}
int grid_row_sb_to_abs(const struct grid *grid, int screen_rows, int sb_rel_row)
{
const int scrollback_start = grid->offset + screen_rows;
int abs_row = sb_rel_row + scrollback_start;
abs_row &= grid->num_rows - 1;
return abs_row;
}
static void
ensure_row_has_extra_data(struct row *row)
{
if (row->extra == NULL)
row->extra = xcalloc(1, sizeof(*row->extra));
}
static void
verify_no_overlapping_uris(const struct row_data *extra)
{
#if defined(_DEBUG)
for (size_t i = 0; i < extra->uri_ranges.count; i++) {
const struct row_uri_range *r1 = &extra->uri_ranges.v[i];
for (size_t j = i + 1; j < extra->uri_ranges.count; j++) {
const struct row_uri_range *r2 = &extra->uri_ranges.v[j];
xassert(r1 != r2);
if ((r1->start <= r2->start && r1->end >= r2->start) ||
(r1->start <= r2->end && r1->end >= r2->end))
{
BUG("OSC-8 URI overlap: %s: %d-%d: %s: %d-%d",
r1->uri, r1->start, r1->end,
r2->uri, r2->start, r2->end);
}
}
}
#endif
}
static void
verify_uris_are_sorted(const struct row_data *extra)
{
#if defined(_DEBUG)
const struct row_uri_range *last = NULL;
for (size_t i = 0; i < extra->uri_ranges.count; i++) {
const struct row_uri_range *r = &extra->uri_ranges.v[i];
if (last != NULL) {
if (last->start >= r->start || last->end >= r->end) {
BUG("OSC-8 URI not sorted correctly: "
"%s: %d-%d came before %s: %d-%d",
last->uri, last->start, last->end,
r->uri, r->start, r->end);
}
}
last = r;
}
#endif
}
static void
uri_range_ensure_size(struct row_data *extra, uint32_t count_to_add)
{
if (extra->uri_ranges.count + count_to_add > extra->uri_ranges.size) {
extra->uri_ranges.size = extra->uri_ranges.count + count_to_add;
extra->uri_ranges.v = xrealloc(
extra->uri_ranges.v,
extra->uri_ranges.size * sizeof(extra->uri_ranges.v[0]));
}
xassert(extra->uri_ranges.count + count_to_add <= extra->uri_ranges.size);
}
/*
* Be careful! This function may xrealloc() the URI range vector, thus
* invalidating pointers into it.
*/
static void
uri_range_insert(struct row_data *extra, size_t idx, int start, int end,
uint64_t id, const char *uri)
{
uri_range_ensure_size(extra, 1);
xassert(idx <= extra->uri_ranges.count);
const size_t move_count = extra->uri_ranges.count - idx;
memmove(&extra->uri_ranges.v[idx + 1],
&extra->uri_ranges.v[idx],
move_count * sizeof(extra->uri_ranges.v[0]));
extra->uri_ranges.count++;
extra->uri_ranges.v[idx] = (struct row_uri_range){
.start = start,
.end = end,
.id = id,
.uri = xstrdup(uri),
};
}
static void
uri_range_append_no_strdup(struct row_data *extra, int start, int end,
uint64_t id, char *uri)
{
uri_range_ensure_size(extra, 1);
extra->uri_ranges.v[extra->uri_ranges.count++] = (struct row_uri_range){
.start = start,
.end = end,
.id = id,
.uri = uri,
};
}
static void
uri_range_append(struct row_data *extra, int start, int end, uint64_t id,
const char *uri)
{
uri_range_append_no_strdup(extra, start, end, id, xstrdup(uri));
}
static void
uri_range_delete(struct row_data *extra, size_t idx)
{
xassert(idx < extra->uri_ranges.count);
grid_row_uri_range_destroy(&extra->uri_ranges.v[idx]);
const size_t move_count = extra->uri_ranges.count - idx - 1;
memmove(&extra->uri_ranges.v[idx],
&extra->uri_ranges.v[idx + 1],
move_count * sizeof(extra->uri_ranges.v[0]));
extra->uri_ranges.count--;
}
struct grid *
grid_snapshot(const struct grid *grid)
{
struct grid *clone = xmalloc(sizeof(*clone));
clone->num_rows = grid->num_rows;
clone->num_cols = grid->num_cols;
clone->offset = grid->offset;
clone->view = grid->view;
clone->cursor = grid->cursor;
clone->rows = xcalloc(grid->num_rows, sizeof(clone->rows[0]));
memset(&clone->scroll_damage, 0, sizeof(clone->scroll_damage));
memset(&clone->sixel_images, 0, sizeof(clone->sixel_images));
tll_foreach(grid->scroll_damage, it)
tll_push_back(clone->scroll_damage, it->item);
for (int r = 0; r < grid->num_rows; r++) {
const struct row *row = grid->rows[r];
if (row == NULL)
continue;
struct row *clone_row = xmalloc(sizeof(*row));
clone->rows[r] = clone_row;
clone_row->cells = xmalloc(grid->num_cols * sizeof(clone_row->cells[0]));
clone_row->linebreak = row->linebreak;
clone_row->dirty = row->dirty;
for (int c = 0; c < grid->num_cols; c++)
clone_row->cells[c] = row->cells[c];
const struct row_data *extra = row->extra;
if (extra != NULL) {
struct row_data *clone_extra = xcalloc(1, sizeof(*clone_extra));
clone_row->extra = clone_extra;
uri_range_ensure_size(clone_extra, extra->uri_ranges.count);
for (size_t i = 0; i < extra->uri_ranges.count; i++) {
const struct row_uri_range *range = &extra->uri_ranges.v[i];
uri_range_append(
clone_extra,
range->start, range->end, range->id, range->uri);
}
} else
clone_row->extra = NULL;
}
tll_foreach(grid->sixel_images, it) {
int width = it->item.width;
int height = it->item.height;
pixman_image_t *pix = it->item.pix;
pixman_format_code_t pix_fmt = pixman_image_get_format(pix);
int stride = stride_for_format_and_width(pix_fmt, width);
size_t size = stride * height;
void *new_data = xmalloc(size);
memcpy(new_data, it->item.data, size);
pixman_image_t *new_pix = pixman_image_create_bits_no_clear(
pix_fmt, width, height, new_data, stride);
struct sixel six = {
.data = new_data,
.pix = new_pix,
.width = width,
.height = height,
.rows = it->item.rows,
.cols = it->item.cols,
.pos = it->item.pos,
};
tll_push_back(clone->sixel_images, six);
}
return clone;
}
void
grid_free(struct grid *grid)
{
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(grid->rows[r]);
tll_foreach(grid->sixel_images, it) {
sixel_destroy(&it->item);
tll_remove(grid->sixel_images, it);
}
free(grid->rows);
tll_free(grid->scroll_damage);
}
void
grid_swap_row(struct grid *grid, int row_a, int row_b)
{
xassert(grid->offset >= 0);
xassert(row_a != row_b);
int real_a = (grid->offset + row_a) & (grid->num_rows - 1);
int real_b = (grid->offset + row_b) & (grid->num_rows - 1);
struct row *a = grid->rows[real_a];
struct row *b = grid->rows[real_b];
grid->rows[real_a] = b;
grid->rows[real_b] = a;
}
struct row *
grid_row_alloc(int cols, bool initialize)
{
struct row *row = xmalloc(sizeof(*row));
row->dirty = false;
row->linebreak = false;
row->extra = NULL;
if (initialize) {
row->cells = xcalloc(cols, sizeof(row->cells[0]));
for (size_t c = 0; c < cols; c++)
row->cells[c].attrs.clean = 1;
} else
row->cells = xmalloc(cols * sizeof(row->cells[0]));
return row;
}
void
grid_row_free(struct row *row)
{
if (row == NULL)
return;
grid_row_reset_extra(row);
free(row->extra);
free(row->cells);
free(row);
}
void
grid_resize_without_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows)
{
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
int new_offset = 0;
/* Copy old lines, truncating them if old rows were longer */
for (int r = 0, n = min(old_screen_rows, new_screen_rows); r < n; r++) {
const int old_row_idx = (grid->offset + r) & (old_rows - 1);
const int new_row_idx = (new_offset + r) & (new_rows - 1);
const struct row *old_row = old_grid[old_row_idx];
xassert(old_row != NULL);
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
memcpy(new_row->cells,
old_row->cells,
sizeof(struct cell) * min(old_cols, new_cols));
new_row->dirty = old_row->dirty;
new_row->linebreak = false;
if (new_cols > old_cols) {
/* Clear "new" columns */
memset(&new_row->cells[old_cols], 0,
sizeof(struct cell) * (new_cols - old_cols));
new_row->dirty = true;
} else if (old_cols > new_cols) {
/* Make sure we don't cut a multi-column character in two */
for (int i = new_cols; i > 0 && old_row->cells[i].wc > CELL_SPACER; i--)
new_row->cells[i - 1].wc = 0;
}
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
if (sixel.pos.col < new_cols)
tll_push_back(grid->sixel_images, sixel);
else
sixel_destroy(&it->item);
tll_remove(untranslated_sixels, it);
}
/* Copy URI ranges, truncating them if necessary */
const struct row_data *old_extra = old_row->extra;
if (old_extra == NULL)
continue;
ensure_row_has_extra_data(new_row);
struct row_data *new_extra = new_row->extra;
uri_range_ensure_size(new_extra, old_extra->uri_ranges.count);
for (size_t i = 0; i < old_extra->uri_ranges.count; i++) {
const struct row_uri_range *range = &old_extra->uri_ranges.v[i];
if (range->start >= new_cols) {
/* The whole range is truncated */
continue;
}
const int start = range->start;
const int end = min(range->end, new_cols - 1);
uri_range_append(new_extra, start, end, range->id, range->uri);
}
}
/* Clear "new" lines */
for (int r = min(old_screen_rows, new_screen_rows); r < new_screen_rows; r++) {
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[(new_offset + r) & (new_rows - 1)] = new_row;
memset(new_row->cells, 0, sizeof(struct cell) * new_cols);
new_row->dirty = true;
}
#if defined(_DEBUG)
for (size_t r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
verify_no_overlapping_uris(row->extra);
verify_uris_are_sorted(row->extra);
}
#endif
/* Free old grid */
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(old_grid[r]);
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
grid->view = grid->offset = new_offset;
/* Keep cursor at current position, but clamp to new dimensions */
struct coord cursor = grid->cursor.point;
if (cursor.row == old_screen_rows - 1) {
/* 'less' breaks if the cursor isn't at the bottom */
cursor.row = new_screen_rows - 1;
}
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
grid->cursor.point = cursor;
struct coord saved_cursor = grid->saved_cursor.point;
if (saved_cursor.row == old_screen_rows - 1)
saved_cursor.row = new_screen_rows - 1;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->saved_cursor.point = saved_cursor;
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(_DEBUG)
for (int r = 0; r < new_screen_rows; r++)
grid_row_in_view(grid, r);
#endif
}
static void
reflow_uri_range_start(struct row_uri_range *range, struct row *new_row,
int new_col_idx)
{
ensure_row_has_extra_data(new_row);
uri_range_append_no_strdup
(new_row->extra, new_col_idx, -1, range->id, range->uri);
range->uri = NULL;
}
static void
reflow_uri_range_end(struct row_uri_range *range, struct row *new_row,
int new_col_idx)
{
struct row_data *extra = new_row->extra;
xassert(extra->uri_ranges.count > 0);
struct row_uri_range *new_range =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
xassert(new_range->id == range->id);
xassert(new_range->end < 0);
new_range->end = new_col_idx;
}
static struct row *
_line_wrap(struct grid *old_grid, struct row **new_grid, struct row *row,
int *row_idx, int *col_idx, int row_count, int col_count)
{
*col_idx = 0;
*row_idx = (*row_idx + 1) & (row_count - 1);
struct row *new_row = new_grid[*row_idx];
if (new_row == NULL) {
/* Scrollback not yet full, allocate a completely new row */
new_row = grid_row_alloc(col_count, false);
new_grid[*row_idx] = new_row;
} else {
/* Scrollback is full, need to re-use a row */
grid_row_reset_extra(new_row);
new_row->linebreak = false;
tll_foreach(old_grid->sixel_images, it) {
if (it->item.pos.row == *row_idx) {
sixel_destroy(&it->item);
tll_remove(old_grid->sixel_images, it);
}
}
/*
* TODO: detect if the re-used row is covered by the
* selection. Of so, cancel the selection. The problem: we
* dont know if weve translated the selection coordinates
* yet.
*/
}
struct row_data *extra = row->extra;
if (extra == NULL)
return new_row;
/*
* URI ranges are per row. Thus, we need to close the still-open
* ranges on the previous row, and re-open them on the
* next/current row.
*/
if (extra->uri_ranges.count > 0) {
struct row_uri_range *range =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
if (range->end < 0) {
/* Terminate URI range on the previous row */
range->end = col_count - 1;
/* Open a new range on the new/current row */
ensure_row_has_extra_data(new_row);
uri_range_append(new_row->extra, 0, -1, range->id, range->uri);
}
}
return new_row;
}
static struct {
int scrollback_start;
int rows;
} tp_cmp_ctx;
static int
tp_cmp(const void *_a, const void *_b)
{
const struct coord *a = *(const struct coord **)_a;
const struct coord *b = *(const struct coord **)_b;
int scrollback_start = tp_cmp_ctx.scrollback_start;
int num_rows = tp_cmp_ctx.rows;
int a_row = (a->row - scrollback_start + num_rows) & (num_rows - 1);
int b_row = (b->row - scrollback_start + num_rows) & (num_rows - 1);
xassert(a_row >= 0);
xassert(a_row < num_rows || num_rows == 0);
xassert(b_row >= 0);
xassert(b_row < num_rows || num_rows == 0);
if (a_row < b_row)
return -1;
if (a_row > b_row)
return 1;
xassert(a_row == b_row);
if (a->col < b->col)
return -1;
if (a->col > b->col)
return 1;
xassert(a->col == b->col);
return 0;
}
void
grid_resize_and_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows,
size_t tracking_points_count,
struct coord *const _tracking_points[static tracking_points_count])
{
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec start;
clock_gettime(CLOCK_MONOTONIC, &start);
#endif
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
/* Is viewpoint tracking current grid offset? */
const bool view_follows = grid->view == grid->offset;
int new_col_idx = 0;
int new_row_idx = 0;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
struct row *new_row = new_grid[new_row_idx];
xassert(new_row == NULL);
new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
/* Start at the beginning of the old grid's scrollback. That is,
* at the output that is *oldest* */
int offset = grid->offset + old_screen_rows;
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
/* Turn cursor coordinates into grid absolute coordinates */
struct coord cursor = grid->cursor.point;
cursor.row += grid->offset;
cursor.row &= old_rows - 1;
struct coord saved_cursor = grid->saved_cursor.point;
saved_cursor.row += grid->offset;
saved_cursor.row &= old_rows - 1;
size_t tp_count =
tracking_points_count +
1 + /* cursor */
1 + /* saved cursor */
!view_follows + /* viewport */
1; /* terminator */
struct coord *tracking_points[tp_count];
memcpy(tracking_points, _tracking_points, tracking_points_count * sizeof(_tracking_points[0]));
tracking_points[tracking_points_count] = &cursor;
tracking_points[tracking_points_count + 1] = &saved_cursor;
struct coord viewport = {0, grid->view};
if (!view_follows)
tracking_points[tracking_points_count + 2] = &viewport;
/* Not thread safe! */
tp_cmp_ctx.scrollback_start = offset;
tp_cmp_ctx.rows = old_rows;
qsort(
tracking_points, tp_count - 1, sizeof(tracking_points[0]), &tp_cmp);
/* NULL terminate */
struct coord terminator = {-1, -1};
tracking_points[tp_count - 1] = &terminator;
struct coord **next_tp = &tracking_points[0];
LOG_DBG("scrollback-start=%d", offset);
for (size_t i = 0; i < tp_count - 1; i++) {
LOG_DBG("TP #%zu: row=%d, col=%d",
i, tracking_points[i]->row, tracking_points[i]->col);
}
/*
* Walk the old grid
*/
for (int r = 0; r < old_rows; r++) {
const size_t old_row_idx = (offset + r) & (old_rows - 1);
/* Unallocated (empty) rows we can simply skip */
const struct row *old_row = old_grid[old_row_idx];
if (old_row == NULL)
continue;
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
tll_push_back(grid->sixel_images, sixel);
tll_remove(untranslated_sixels, it);
}
#define line_wrap() \
new_row = _line_wrap( \
grid, new_grid, new_row, &new_row_idx, &new_col_idx, \
new_rows, new_cols)
/* Find last non-empty cell */
int col_count = 0;
for (int c = old_cols - 1; c >= 0; c--) {
const struct cell *cell = &old_row->cells[c];
if (!(cell->wc == 0 || cell->wc == CELL_SPACER)) {
col_count = c + 1;
break;
}
}
xassert(col_count >= 0 && col_count <= old_cols);
/* Do we have a (at least one) tracking point on this row */
struct coord *tp;
if (unlikely((*next_tp)->row == old_row_idx)) {
tp = *next_tp;
/* Find the *last* tracking point on this row */
struct coord *last_on_row = tp;
for (struct coord **iter = next_tp; (*iter)->row == old_row_idx; iter++)
last_on_row = *iter;
/* And make sure its end point is included in the col range */
xassert(last_on_row->row == old_row_idx);
col_count = max(col_count, last_on_row->col + 1);
} else
tp = NULL;
/* Does this row have any URIs? */
struct row_uri_range *range, *range_terminator;
struct row_data *extra = old_row->extra;
if (extra != NULL && extra->uri_ranges.count > 0) {
range = &extra->uri_ranges.v[0];
range_terminator = &extra->uri_ranges.v[extra->uri_ranges.count];
/* Make sure the *last* URI range's end point is included
* in the copy */
const struct row_uri_range *last_on_row =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
col_count = max(col_count, last_on_row->end + 1);
} else
range = range_terminator = NULL;
for (int start = 0, left = col_count; left > 0;) {
int end;
bool tp_break = false;
bool uri_break = false;
/*
* Set end-coordinate for this chunk, by finding the next
* point-of-interrest on this row.
*
* If there are no more tracking points, or URI ranges,
* the end-coordinate will be at the end of the row,
*/
if (range != range_terminator) {
int uri_col = (range->start >= start ? range->start : range->end) + 1;
if (tp != NULL) {
int tp_col = tp->col + 1;
end = min(tp_col, uri_col);
tp_break = end == tp_col;
uri_break = end == uri_col;
LOG_DBG("tp+uri break at %d (%d, %d)", end, tp_col, uri_col);
} else {
end = uri_col;
uri_break = true;
LOG_DBG("uri break at %d", end);
}
} else if (tp != NULL) {
end = tp->col + 1;
tp_break = true;
LOG_DBG("TP break at %d", end);
} else
end = col_count;
int cols = end - start;
xassert(cols > 0);
xassert(start + cols <= old_cols);
/*
* Copy the row chunk to the new grid. Note that there may
* be fewer cells left on the new row than what we have in
* the chunk. I.e. the chunk may have to be split up into
* multiple memcpy:ies.
*/
for (int count = cols, from = start; count > 0;) {
xassert(new_col_idx <= new_cols);
int new_row_cells_left = new_cols - new_col_idx;
/* Row full, emit newline and get a new, fresh, row */
if (new_row_cells_left <= 0) {
line_wrap();
new_row_cells_left = new_cols;
}
/* Number of cells we can copy */
int amount = min(count, new_row_cells_left);
xassert(amount > 0);
/*
* If were going to reach the end of the new row, we
* need to make sure we dont end in the middle of a
* multi-column character.
*/
int spacers = 0;
if (new_col_idx + amount >= new_cols) {
/*
* While the cell *after* the last cell is a CELL_SPACER
*
* This means we have a multi-column character
* that doesnt fit on the current row. We need to
* push it to the next row, and insert CELL_SPACER
* cells as padding.
*/
while (
unlikely(
amount > 1 &&
from + amount < old_cols &&
old_row->cells[from + amount].wc >= CELL_SPACER + 1))
{
amount--;
spacers++;
}
xassert(
amount == 1 ||
old_row->cells[from + amount - 1].wc <= CELL_SPACER + 1);
}
xassert(new_col_idx + amount <= new_cols);
xassert(from + amount <= old_cols);
memcpy(
&new_row->cells[new_col_idx], &old_row->cells[from],
amount * sizeof(struct cell));
count -= amount;
from += amount;
new_col_idx += amount;
xassert(new_col_idx <= new_cols);
if (unlikely(spacers > 0)) {
xassert(new_col_idx + spacers == new_cols);
const struct cell *cell = &old_row->cells[from - 1];
for (int i = 0; i < spacers; i++, new_col_idx++) {
new_row->cells[new_col_idx].wc = CELL_SPACER;
new_row->cells[new_col_idx].attrs = cell->attrs;
}
}
}
xassert(new_col_idx > 0);
if (tp_break) {
do {
xassert(tp != NULL);
xassert(tp->row == old_row_idx);
xassert(tp->col == end - 1);
tp->row = new_row_idx;
tp->col = new_col_idx - 1;
next_tp++;
tp = *next_tp;
} while (tp->row == old_row_idx && tp->col == end - 1);
if (tp->row != old_row_idx)
tp = NULL;
LOG_DBG("next TP (tp=%p): %dx%d",
(void*)tp, (*next_tp)->row, (*next_tp)->col);
}
if (uri_break) {
xassert(range != NULL);
if (range->start == end - 1)
reflow_uri_range_start(range, new_row, new_col_idx - 1);
if (range->end == end - 1) {
reflow_uri_range_end(range, new_row, new_col_idx - 1);
grid_row_uri_range_destroy(range);
range++;
}
}
left -= cols;
start += cols;
}
if (old_row->linebreak) {
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
new_row->linebreak = true;
line_wrap();
}
grid_row_free(old_grid[old_row_idx]);
grid->rows[old_row_idx] = NULL;
#undef line_wrap
}
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
for (struct coord **tp = next_tp; *tp != &terminator; tp++) {
LOG_DBG("TP: row=%d, col=%d (old cols: %d, new cols: %d)",
(*tp)->row, (*tp)->col, old_cols, new_cols);
}
xassert(old_rows == 0 || *next_tp == &terminator);
#if defined(_DEBUG)
/* Verify all URI ranges have been “closed” */
for (int r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
for (size_t i = 0; i < row->extra->uri_ranges.count; i++)
xassert(row->extra->uri_ranges.v[i].end >= 0);
verify_no_overlapping_uris(row->extra);
verify_uris_are_sorted(row->extra);
}
/* Verify all old rows have been free:d */
for (int i = 0; i < old_rows; i++)
xassert(grid->rows[i] == NULL);
#endif
/* Set offset such that the last reflowed row is at the bottom */
grid->offset = new_row_idx - new_screen_rows + 1;
while (grid->offset < 0)
grid->offset += new_rows;
while (new_grid[grid->offset] == NULL)
grid->offset = (grid->offset + 1) & (new_rows - 1);
/* Ensure all visible rows have been allocated */
for (int r = 0; r < new_screen_rows; r++) {
int idx = (grid->offset + r) & (new_rows - 1);
if (new_grid[idx] == NULL)
new_grid[idx] = grid_row_alloc(new_cols, true);
}
grid->view = view_follows ? grid->offset : viewport.row;
/* If enlarging the window, the old viewport may be too far down,
* with unallocated rows. Make sure this cannot happen */
while (true) {
int idx = (grid->view + new_screen_rows - 1) & (new_rows - 1);
if (new_grid[idx] != NULL)
break;
grid->view--;
if (grid->view < 0)
grid->view += new_rows;
}
for (size_t r = 0; r < new_screen_rows; r++) {
int UNUSED idx = (grid->view + r) & (new_rows - 1);
xassert(new_grid[idx] != NULL);
}
/* Free old grid (rows already free:d) */
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
/* Convert absolute coordinates to screen relative */
cursor.row -= grid->offset;
while (cursor.row < 0)
cursor.row += grid->num_rows;
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
saved_cursor.row -= grid->offset;
while (saved_cursor.row < 0)
saved_cursor.row += grid->num_rows;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
grid->cursor.point = cursor;
grid->saved_cursor.point = saved_cursor;
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec stop;
clock_gettime(CLOCK_MONOTONIC, &stop);
struct timespec diff;
timespec_sub(&stop, &start, &diff);
LOG_INFO("reflowed %d -> %d rows in %lds %ldns",
old_rows, new_rows,
(long)diff.tv_sec,
diff.tv_nsec);
#endif
}
void
grid_row_uri_range_put(struct row *row, int col, const char *uri, uint64_t id)
{
ensure_row_has_extra_data(row);
size_t insert_idx = 0;
bool replace = false;
bool run_merge_pass = false;
struct row_data *extra = row->extra;
for (ssize_t i = (ssize_t)extra->uri_ranges.count - 1; i >= 0; i--) {
struct row_uri_range *r = &extra->uri_ranges.v[i];
const bool matching_id = r->id == id;
if (matching_id && r->end + 1 == col) {
/* Extend existing URIs tail */
r->end++;
goto out;
}
else if (r->end < col) {
insert_idx = i + 1;
break;
}
else if (r->start > col)
continue;
else {
xassert(r->start <= col);
xassert(r->end >= col);
if (matching_id)
goto out;
if (r->start == r->end) {
replace = true;
run_merge_pass = true;
insert_idx = i;
} else if (r->start == col) {
run_merge_pass = true;
r->start++;
insert_idx = i;
} else if (r->end == col) {
run_merge_pass = true;
r->end--;
insert_idx = i + 1;
} else {
xassert(r->start < col);
xassert(r->end > col);
uri_range_insert(extra, i + 1, col + 1, r->end, r->id, r->uri);
/* The insertion may xrealloc() the vector, making our
* old pointer invalid */
r = &extra->uri_ranges.v[i];
r->end = col - 1;
xassert(r->start <= r->end);
insert_idx = i + 1;
}
break;
}
}
xassert(insert_idx <= extra->uri_ranges.count);
if (replace) {
grid_row_uri_range_destroy(&extra->uri_ranges.v[insert_idx]);
extra->uri_ranges.v[insert_idx] = (struct row_uri_range){
.start = col,
.end = col,
.id = id,
.uri = xstrdup(uri),
};
} else
uri_range_insert(extra, insert_idx, col, col, id, uri);
if (run_merge_pass) {
for (size_t i = 1; i < extra->uri_ranges.count; i++) {
struct row_uri_range *r1 = &extra->uri_ranges.v[i - 1];
struct row_uri_range *r2 = &extra->uri_ranges.v[i];
if (r1->id == r2->id && r1->end + 1 == r2->start) {
r1->end = r2->end;
uri_range_delete(extra, i);
i--;
}
}
}
out:
verify_no_overlapping_uris(extra);
verify_uris_are_sorted(extra);
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
#define verify_range(idx, _start, _end, _id) \
do { \
xassert(idx < row_data.uri_ranges.count); \
xassert(row_data.uri_ranges.v[idx].start == _start); \
xassert(row_data.uri_ranges.v[idx].end == _end); \
xassert(row_data.uri_ranges.v[idx].id == _id); \
} while (0)
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 1, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 2, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 3, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* No-op */
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* Replace head */
grid_row_uri_range_put(&row, 0, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 3, 123);
/* Replace tail */
grid_row_uri_range_put(&row, 3, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 2, 123);
verify_range(2, 3, 3, 789);
/* Replace tail + extend head */
grid_row_uri_range_put(&row, 2, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 1, 123);
verify_range(2, 2, 3, 789);
/* Replace + extend tail */
grid_row_uri_range_put(&row, 1, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 1, 456);
verify_range(1, 2, 3, 789);
/* Replace + extend, then splice */
grid_row_uri_range_put(&row, 1, "http://tail", 789);
grid_row_uri_range_put(&row, 2, "http://splice", 000);
xassert(row_data.uri_ranges.count == 4);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 1, 789);
verify_range(2, 2, 2, 000);
verify_range(3, 3, 3, 789);
for (size_t i = 0; i < row_data.uri_ranges.count; i++)
grid_row_uri_range_destroy(&row_data.uri_ranges.v[i]);
free(row_data.uri_ranges.v);
#undef verify_range
}
void
grid_row_uri_range_erase(struct row *row, int start, int end)
{
xassert(row->extra != NULL);
xassert(start <= end);
struct row_data *extra = row->extra;
/* Split up, or remove, URI ranges affected by the erase */
for (ssize_t i = (ssize_t)extra->uri_ranges.count - 1; i >= 0; i--) {
struct row_uri_range *old = &extra->uri_ranges.v[i];
if (old->end < start)
return;
if (old->start > end)
continue;
if (start <= old->start && end >= old->end) {
/* Erase range covers URI completely - remove it */
uri_range_delete(extra, i);
}
else if (start > old->start && end < old->end) {
/* Erase range erases a part in the middle of the URI */
uri_range_insert(
extra, i + 1, end + 1, old->end, old->id, old->uri);
/* The insertion may xrealloc() the vector, making our
* old pointer invalid */
old = &extra->uri_ranges.v[i];
old->end = start - 1;
return; /* There can be no more URIs affected by the erase range */
}
else if (start <= old->start && end >= old->start) {
/* Erase range erases the head of the URI */
xassert(start <= old->start);
old->start = end + 1;
}
else if (start <= old->end && end >= old->end) {
/* Erase range erases the tail of the URI */
xassert(end >= old->end);
old->end = start - 1;
return; /* There can be no more overlapping URIs */
}
}
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
/* Try erasing a row without any URIs */
grid_row_uri_range_erase(&row, 0, 200);
xassert(row_data.uri_ranges.count == 0);
uri_range_append(&row_data, 1, 10, 0, "dummy");
uri_range_append(&row_data, 11, 20, 0, "dummy");
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[1].start == 11);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_uris(&row_data);
verify_uris_are_sorted(&row_data);
/* Erase both URis */
grid_row_uri_range_erase(&row, 1, 20);
xassert(row_data.uri_ranges.count == 0);
verify_no_overlapping_uris(&row_data);
verify_uris_are_sorted(&row_data);
/* Two URIs, then erase second half of the first, first half of
the second */
uri_range_append(&row_data, 1, 10, 0, "dummy");
uri_range_append(&row_data, 11, 20, 0, "dummy");
grid_row_uri_range_erase(&row, 5, 15);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 16);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_uris(&row_data);
verify_uris_are_sorted(&row_data);
grid_row_uri_range_destroy(&row_data.uri_ranges.v[0]);
grid_row_uri_range_destroy(&row_data.uri_ranges.v[1]);
row_data.uri_ranges.count = 0;
/* One URI, erase middle part of it */
uri_range_append(&row_data, 1, 10, 0, "dummy");
grid_row_uri_range_erase(&row, 5, 6);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 7);
xassert(row_data.uri_ranges.v[1].end == 10);
verify_no_overlapping_uris(&row_data);
verify_uris_are_sorted(&row_data);
grid_row_uri_range_destroy(&row_data.uri_ranges.v[0]);
grid_row_uri_range_destroy(&row_data.uri_ranges.v[1]);
row_data.uri_ranges.count = 0;
/*
* Regression test: erasing the middle part of an URI causes us to
* insert a new URI (we split the partly erased URI into two).
*
* The insertion logic typically triggers an xrealloc(), which, in
* some cases, *moves* the entire URI vector to a new base
* address. grid_row_uri_range_erase() did not account for this,
* and tried to update the end member in the URI range we just
* split. This causes foot to crash when the xrealloc() has moved
* the URI range vector.
*
* (note: were only verifying we dont crash here, hence the lack
* of assertions).
*/
free(row_data.uri_ranges.v);
row_data.uri_ranges.v = NULL;
row_data.uri_ranges.size = 0;
uri_range_append(&row_data, 1, 10, 0, "dummy");
xassert(row_data.uri_ranges.size == 1);
grid_row_uri_range_erase(&row, 5, 7);
xassert(row_data.uri_ranges.count == 2);
for (size_t i = 0; i < row_data.uri_ranges.count; i++)
grid_row_uri_range_destroy(&row_data.uri_ranges.v[i]);
free(row_data.uri_ranges.v);
}