foot/grid.c
2024-06-26 18:39:23 +02:00

1708 lines
55 KiB
C

#include "grid.h"
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#define LOG_MODULE "grid"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "debug.h"
#include "macros.h"
#include "sixel.h"
#include "stride.h"
#include "util.h"
#include "xmalloc.h"
#define TIME_REFLOW 0
/*
* "sb" (scrollback relative) coordinates
*
* The scrollback relative row number 0 is the *first*, and *oldest*
* row in the scrollback history (and thus the *first* row to be
* scrolled out). Thus, a higher number means further *down* in the
* scrollback, with the *highest* number being at the bottom of the
* screen, where new input appears.
*/
int
grid_row_abs_to_sb(const struct grid *grid, int screen_rows, int abs_row)
{
const int scrollback_start = grid->offset + screen_rows;
int rebased_row = abs_row - scrollback_start + grid->num_rows;
rebased_row &= grid->num_rows - 1;
return rebased_row;
}
int grid_row_sb_to_abs(const struct grid *grid, int screen_rows, int sb_rel_row)
{
const int scrollback_start = grid->offset + screen_rows;
int abs_row = sb_rel_row + scrollback_start;
abs_row &= grid->num_rows - 1;
return abs_row;
}
int
grid_sb_start_ignore_uninitialized(const struct grid *grid, int screen_rows)
{
int scrollback_start = grid->offset + screen_rows;
scrollback_start &= grid->num_rows - 1;
while (grid->rows[scrollback_start] == NULL) {
scrollback_start++;
scrollback_start &= grid->num_rows - 1;
}
return scrollback_start;
}
int
grid_row_abs_to_sb_precalc_sb_start(const struct grid *grid, int sb_start,
int abs_row)
{
int rebased_row = abs_row - sb_start + grid->num_rows;
rebased_row &= grid->num_rows - 1;
return rebased_row;
}
int
grid_row_sb_to_abs_precalc_sb_start(const struct grid *grid, int sb_start,
int sb_rel_row)
{
int abs_row = sb_rel_row + sb_start;
abs_row &= grid->num_rows - 1;
return abs_row;
}
static void
ensure_row_has_extra_data(struct row *row)
{
if (row->extra == NULL)
row->extra = xcalloc(1, sizeof(*row->extra));
}
static void
verify_no_overlapping_ranges_of_type(const struct row_ranges *ranges,
enum row_range_type type)
{
#if defined(_DEBUG)
for (size_t i = 0; i < ranges->count; i++) {
const struct row_range *r1 = &ranges->v[i];
for (size_t j = i + 1; j < ranges->count; j++) {
const struct row_range *r2 = &ranges->v[j];
xassert(r1 != r2);
if ((r1->start <= r2->start && r1->end >= r2->start) ||
(r1->start <= r2->end && r1->end >= r2->end))
{
switch (type) {
case ROW_RANGE_URI:
BUG("OSC-8 URI overlap: %s: %d-%d: %s: %d-%d",
r1->uri.uri, r1->start, r1->end,
r2->uri.uri, r2->start, r2->end);
break;
case ROW_RANGE_CURLY:
BUG("curly underline overlap: %d-%d, %d-%d",
r1->start, r1->end, r2->start, r2->end);
break;
}
}
}
}
#endif
}
static void
verify_no_overlapping_ranges(const struct row_data *extra)
{
verify_no_overlapping_ranges_of_type(&extra->uri_ranges, ROW_RANGE_URI);
verify_no_overlapping_ranges_of_type(&extra->curly_ranges, ROW_RANGE_CURLY);
}
static void
verify_ranges_of_type_are_sorted(const struct row_ranges *ranges,
enum row_range_type type)
{
#if defined(_DEBUG)
const struct row_range *last = NULL;
for (size_t i = 0; i < ranges->count; i++) {
const struct row_range *r = &ranges->v[i];
if (last != NULL) {
if (last->start >= r->start || last->end >= r->end) {
switch (type) {
case ROW_RANGE_URI:
BUG("OSC-8 URI not sorted correctly: "
"%s: %d-%d came before %s: %d-%d",
last->uri.uri, last->start, last->end,
r->uri.uri, r->start, r->end);
break;
case ROW_RANGE_CURLY:
BUG("curly ranges not sorted correctly: "
"%d-%d came before %d-%d",
last->start, last->end, r->start, r->end);
break;
}
}
}
last = r;
}
#endif
}
static void
verify_ranges_are_sorted(const struct row_data *extra)
{
verify_ranges_of_type_are_sorted(&extra->uri_ranges, ROW_RANGE_URI);
verify_ranges_of_type_are_sorted(&extra->curly_ranges, ROW_RANGE_CURLY);
}
static void
range_ensure_size(struct row_ranges *ranges, int count_to_add)
{
if (ranges->count + count_to_add > ranges->size) {
ranges->size = ranges->count + count_to_add;
ranges->v = xrealloc(ranges->v, ranges->size * sizeof(ranges->v[0]));
}
xassert(ranges->count + count_to_add <= ranges->size);
}
static void
range_insert(struct row_ranges *ranges, size_t idx, int start, int end)
{
range_ensure_size(ranges, 1);
xassert(idx <= ranges->count);
const size_t move_count = ranges->count - idx;
memmove(&ranges->v[idx + 1],
&ranges->v[idx],
move_count * sizeof(ranges->v[0]));
ranges->count++;
ranges->v[idx] = (struct row_range){
.start = start,
.end = end,
};
}
/*
* Be careful! This function may xrealloc() the URI range vector, thus
* invalidating pointers into it.
*/
static void
uri_range_insert(struct row_ranges *ranges, size_t idx, int start, int end,
uint64_t id, const char *uri)
{
range_insert(ranges, idx, start, end);
ranges->v[idx].uri.id = id;
ranges->v[idx].uri.uri = xstrdup(uri);
}
static void
curly_range_insert(struct row_ranges *ranges, size_t idx, int start, int end,
struct curly_range_data data)
{
range_insert(ranges, idx, start, end);
ranges->v[idx].curly = data;
}
static void
uri_range_append_no_strdup(struct row_data *extra, int start, int end,
uint64_t id, char *uri)
{
range_ensure_size(&extra->uri_ranges, 1);
extra->uri_ranges.v[extra->uri_ranges.count++] = (struct row_range){
.start = start,
.end = end,
.uri = {
.id = id,
.uri = uri,
},
};
}
static void
uri_range_append(struct row_data *extra, int start, int end, uint64_t id,
const char *uri)
{
uri_range_append_no_strdup(extra, start, end, id, xstrdup(uri));
}
static void
curly_range_append(struct row_data *extra, int start, int end,
struct curly_range_data data)
{
range_ensure_size(&extra->curly_ranges, 1);
extra->curly_ranges.v[extra->curly_ranges.count++] = (struct row_range){
.start = start,
.end = end,
.curly = data,
};
}
static void
range_delete(struct row_ranges *ranges, enum row_range_type type, size_t idx)
{
xassert(idx < ranges->count);
grid_row_range_destroy(&ranges->v[idx], type);
const size_t move_count = ranges->count - idx - 1;
memmove(&ranges->v[idx],
&ranges->v[idx + 1],
move_count * sizeof(ranges->v[0]));
ranges->count--;
}
struct grid *
grid_snapshot(const struct grid *grid)
{
struct grid *clone = xmalloc(sizeof(*clone));
clone->num_rows = grid->num_rows;
clone->num_cols = grid->num_cols;
clone->offset = grid->offset;
clone->view = grid->view;
clone->cursor = grid->cursor;
clone->saved_cursor = grid->saved_cursor;
clone->kitty_kbd = grid->kitty_kbd;
clone->rows = xcalloc(grid->num_rows, sizeof(clone->rows[0]));
memset(&clone->scroll_damage, 0, sizeof(clone->scroll_damage));
memset(&clone->sixel_images, 0, sizeof(clone->sixel_images));
tll_foreach(grid->scroll_damage, it)
tll_push_back(clone->scroll_damage, it->item);
for (int r = 0; r < grid->num_rows; r++) {
const struct row *row = grid->rows[r];
if (row == NULL)
continue;
struct row *clone_row = xmalloc(sizeof(*row));
clone->rows[r] = clone_row;
clone_row->cells = xmalloc(grid->num_cols * sizeof(clone_row->cells[0]));
clone_row->linebreak = row->linebreak;
clone_row->dirty = row->dirty;
clone_row->shell_integration = row->shell_integration;
for (int c = 0; c < grid->num_cols; c++)
clone_row->cells[c] = row->cells[c];
const struct row_data *extra = row->extra;
if (extra != NULL) {
struct row_data *clone_extra = xcalloc(1, sizeof(*clone_extra));
clone_row->extra = clone_extra;
range_ensure_size(&clone_extra->uri_ranges, extra->uri_ranges.count);
range_ensure_size(&clone_extra->curly_ranges, extra->curly_ranges.count);
for (int i = 0; i < extra->uri_ranges.count; i++) {
const struct row_range *range = &extra->uri_ranges.v[i];
uri_range_append(
clone_extra,
range->start, range->end, range->uri.id, range->uri.uri);
}
for (int i = 0; i < extra->curly_ranges.count; i++) {
const struct row_range *range = &extra->curly_ranges.v[i];
curly_range_append(clone_extra, range->start, range->end, range->curly);
}
} else
clone_row->extra = NULL;
}
tll_foreach(grid->sixel_images, it) {
int original_width = it->item.original.width;
int original_height = it->item.original.height;
pixman_image_t *original_pix = it->item.original.pix;
pixman_format_code_t original_pix_fmt = pixman_image_get_format(original_pix);
int original_stride = stride_for_format_and_width(original_pix_fmt, original_width);
size_t original_size = original_stride * original_height;
void *new_original_data = xmemdup(it->item.original.data, original_size);
pixman_image_t *new_original_pix = pixman_image_create_bits_no_clear(
original_pix_fmt, original_width, original_height,
new_original_data, original_stride);
void *new_scaled_data = NULL;
pixman_image_t *new_scaled_pix = NULL;
int scaled_width = -1;
int scaled_height = -1;
if (it->item.scaled.data != NULL) {
scaled_width = it->item.scaled.width;
scaled_height = it->item.scaled.height;
pixman_image_t *scaled_pix = it->item.scaled.pix;
pixman_format_code_t scaled_pix_fmt = pixman_image_get_format(scaled_pix);
int scaled_stride = stride_for_format_and_width(scaled_pix_fmt, scaled_width);
size_t scaled_size = scaled_stride * scaled_height;
new_scaled_data = xmemdup(it->item.scaled.data, scaled_size);
new_scaled_pix = pixman_image_create_bits_no_clear(
scaled_pix_fmt, scaled_width, scaled_height, new_scaled_data,
scaled_stride);
}
struct sixel six = {
.pix = (it->item.pix == it->item.original.pix
? new_original_pix
: (it->item.pix == it->item.scaled.pix
? new_scaled_pix
: NULL)),
.width = it->item.width,
.height = it->item.height,
.rows = it->item.rows,
.cols = it->item.cols,
.pos = it->item.pos,
.opaque = it->item.opaque,
.cell_width = it->item.cell_width,
.cell_height = it->item.cell_height,
.original = {
.data = new_original_data,
.pix = new_original_pix,
.width = original_width,
.height = original_height,
},
.scaled = {
.data = new_scaled_data,
.pix = new_scaled_pix,
.width = scaled_width,
.height = scaled_height,
},
};
tll_push_back(clone->sixel_images, six);
}
return clone;
}
void
grid_free(struct grid *grid)
{
if (grid == NULL)
return;
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(grid->rows[r]);
tll_foreach(grid->sixel_images, it) {
sixel_destroy(&it->item);
tll_remove(grid->sixel_images, it);
}
free(grid->rows);
tll_free(grid->scroll_damage);
}
void
grid_swap_row(struct grid *grid, int row_a, int row_b)
{
xassert(grid->offset >= 0);
xassert(row_a != row_b);
int real_a = (grid->offset + row_a) & (grid->num_rows - 1);
int real_b = (grid->offset + row_b) & (grid->num_rows - 1);
struct row *a = grid->rows[real_a];
struct row *b = grid->rows[real_b];
grid->rows[real_a] = b;
grid->rows[real_b] = a;
}
struct row *
grid_row_alloc(int cols, bool initialize)
{
struct row *row = xmalloc(sizeof(*row));
row->dirty = false;
row->linebreak = false;
row->extra = NULL;
row->shell_integration.prompt_marker = false;
row->shell_integration.cmd_start = -1;
row->shell_integration.cmd_end = -1;
if (initialize) {
row->cells = xcalloc(cols, sizeof(row->cells[0]));
for (size_t c = 0; c < cols; c++)
row->cells[c].attrs.clean = 1;
} else
row->cells = xmalloc(cols * sizeof(row->cells[0]));
return row;
}
void
grid_row_free(struct row *row)
{
if (row == NULL)
return;
grid_row_reset_extra(row);
free(row->extra);
free(row->cells);
free(row);
}
void
grid_resize_without_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows)
{
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
int new_offset = 0;
/* Copy old lines, truncating them if old rows were longer */
for (int r = 0, n = min(old_screen_rows, new_screen_rows); r < n; r++) {
const int old_row_idx = (grid->offset + r) & (old_rows - 1);
const int new_row_idx = (new_offset + r) & (new_rows - 1);
const struct row *old_row = old_grid[old_row_idx];
xassert(old_row != NULL);
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
memcpy(new_row->cells,
old_row->cells,
sizeof(struct cell) * min(old_cols, new_cols));
new_row->dirty = old_row->dirty;
new_row->linebreak = false;
new_row->shell_integration.prompt_marker = old_row->shell_integration.prompt_marker;
new_row->shell_integration.cmd_start = min(old_row->shell_integration.cmd_start, new_cols - 1);
new_row->shell_integration.cmd_end = min(old_row->shell_integration.cmd_end, new_cols - 1);
if (new_cols > old_cols) {
/* Clear "new" columns */
memset(&new_row->cells[old_cols], 0,
sizeof(struct cell) * (new_cols - old_cols));
new_row->dirty = true;
} else if (old_cols > new_cols) {
/* Make sure we don't cut a multi-column character in two */
for (int i = new_cols; i > 0 && old_row->cells[i].wc > CELL_SPACER; i--)
new_row->cells[i - 1].wc = 0;
}
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
if (sixel.pos.col < new_cols)
tll_push_back(grid->sixel_images, sixel);
else
sixel_destroy(&it->item);
tll_remove(untranslated_sixels, it);
}
/* Copy URI ranges, truncating them if necessary */
const struct row_data *old_extra = old_row->extra;
if (old_extra == NULL)
continue;
ensure_row_has_extra_data(new_row);
struct row_data *new_extra = new_row->extra;
range_ensure_size(&new_extra->uri_ranges, old_extra->uri_ranges.count);
range_ensure_size(&new_extra->curly_ranges, old_extra->curly_ranges.count);
for (int i = 0; i < old_extra->uri_ranges.count; i++) {
const struct row_range *range = &old_extra->uri_ranges.v[i];
if (range->start >= new_cols) {
/* The whole range is truncated */
continue;
}
const int start = range->start;
const int end = min(range->end, new_cols - 1);
uri_range_append(new_extra, start, end, range->uri.id, range->uri.uri);
}
for (int i = 0; i < old_extra->curly_ranges.count; i++) {
const struct row_range *range = &old_extra->curly_ranges.v[i];
if (range->start >= new_cols) {
/* The whole range is truncated */
continue;
}
const int start = range->start;
const int end = min(range->end, new_cols - 1);
curly_range_append(new_extra, start, end, range->curly);
}
}
/* Clear "new" lines */
for (int r = min(old_screen_rows, new_screen_rows); r < new_screen_rows; r++) {
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[(new_offset + r) & (new_rows - 1)] = new_row;
memset(new_row->cells, 0, sizeof(struct cell) * new_cols);
new_row->dirty = true;
}
#if defined(_DEBUG)
for (size_t r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
#endif
/* Free old grid */
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(old_grid[r]);
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
grid->view = grid->offset = new_offset;
/* Keep cursor at current position, but clamp to new dimensions */
struct coord cursor = grid->cursor.point;
if (cursor.row == old_screen_rows - 1) {
/* 'less' breaks if the cursor isn't at the bottom */
cursor.row = new_screen_rows - 1;
}
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
grid->cursor.point = cursor;
struct coord saved_cursor = grid->saved_cursor.point;
if (saved_cursor.row == old_screen_rows - 1)
saved_cursor.row = new_screen_rows - 1;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->saved_cursor.point = saved_cursor;
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
xassert(grid->cur_row != NULL);
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(_DEBUG)
for (int r = 0; r < new_screen_rows; r++)
grid_row_in_view(grid, r);
#endif
}
static void
reflow_uri_range_start(struct row_range *range, struct row *new_row,
int new_col_idx)
{
ensure_row_has_extra_data(new_row);
uri_range_append_no_strdup(
new_row->extra, new_col_idx, -1, range->uri.id, range->uri.uri);
range->uri.uri = NULL;
}
static void
reflow_uri_range_end(struct row_range *range, struct row *new_row,
int new_col_idx)
{
struct row_data *extra = new_row->extra;
xassert(extra->uri_ranges.count > 0);
struct row_range *new_range =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
xassert(new_range->uri.id == range->uri.id);
xassert(new_range->end < 0);
new_range->end = new_col_idx;
}
static void
reflow_curly_range_start(struct row_range *range, struct row *new_row,
int new_col_idx)
{
ensure_row_has_extra_data(new_row);
curly_range_append(new_row->extra, new_col_idx, -1, range->curly);
}
static void
reflow_curly_range_end(struct row_range *range, struct row *new_row,
int new_col_idx)
{
struct row_data *extra = new_row->extra;
xassert(extra->curly_ranges.count > 0);
struct row_range *new_range =
&extra->curly_ranges.v[extra->curly_ranges.count - 1];
xassert(new_range->curly.style == range->curly.style);
xassert(new_range->curly.color_src == range->curly.color_src);
xassert(new_range->curly.color == range->curly.color);
xassert(new_range->end < 0);
new_range->end = new_col_idx;
}
static struct row *
_line_wrap(struct grid *old_grid, struct row **new_grid, struct row *row,
int *row_idx, int *col_idx, int row_count, int col_count)
{
*col_idx = 0;
*row_idx = (*row_idx + 1) & (row_count - 1);
struct row *new_row = new_grid[*row_idx];
if (new_row == NULL) {
/* Scrollback not yet full, allocate a completely new row */
new_row = grid_row_alloc(col_count, false);
new_grid[*row_idx] = new_row;
} else {
/* Scrollback is full, need to reuse a row */
grid_row_reset_extra(new_row);
new_row->linebreak = false;
new_row->shell_integration.prompt_marker = false;
new_row->shell_integration.cmd_start = -1;
new_row->shell_integration.cmd_end = -1;
tll_foreach(old_grid->sixel_images, it) {
if (it->item.pos.row == *row_idx) {
sixel_destroy(&it->item);
tll_remove(old_grid->sixel_images, it);
}
}
/*
* TODO: detect if the reused row is covered by the
* selection. Of so, cancel the selection. The problem: we
* don't know if we've translated the selection coordinates
* yet.
*/
}
struct row_data *extra = row->extra;
if (extra == NULL)
return new_row;
/*
* URI ranges are per row. Thus, we need to 'close' the still-open
* ranges on the previous row, and re-open them on the
* next/current row.
*/
if (extra->uri_ranges.count > 0) {
struct row_range *range =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
if (range->end < 0) {
/* Terminate URI range on the previous row */
range->end = col_count - 1;
/* Open a new range on the new/current row */
ensure_row_has_extra_data(new_row);
uri_range_append(new_row->extra, 0, -1, range->uri.id, range->uri.uri);
}
}
if (extra->curly_ranges.count > 0) {
struct row_range *range =
&extra->curly_ranges.v[extra->curly_ranges.count - 1];
if (range->end < 0) {
/* Terminate URI range on the previous row */
range->end = col_count - 1;
/* Open a new range on the new/current row */
ensure_row_has_extra_data(new_row);
curly_range_append(new_row->extra, 0, -1, range->curly);
}
}
return new_row;
}
static struct {
int scrollback_start;
int rows;
} tp_cmp_ctx;
static int
tp_cmp(const void *_a, const void *_b)
{
const struct coord *a = *(const struct coord **)_a;
const struct coord *b = *(const struct coord **)_b;
int scrollback_start = tp_cmp_ctx.scrollback_start;
int num_rows = tp_cmp_ctx.rows;
int a_row = (a->row - scrollback_start + num_rows) & (num_rows - 1);
int b_row = (b->row - scrollback_start + num_rows) & (num_rows - 1);
xassert(a_row >= 0);
xassert(a_row < num_rows || num_rows == 0);
xassert(b_row >= 0);
xassert(b_row < num_rows || num_rows == 0);
if (a_row < b_row)
return -1;
if (a_row > b_row)
return 1;
xassert(a_row == b_row);
if (a->col < b->col)
return -1;
if (a->col > b->col)
return 1;
xassert(a->col == b->col);
return 0;
}
void
grid_resize_and_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows,
size_t tracking_points_count,
struct coord *const _tracking_points[static tracking_points_count])
{
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec start;
clock_gettime(CLOCK_MONOTONIC, &start);
#endif
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
/* Is viewpoint tracking current grid offset? */
const bool view_follows = grid->view == grid->offset;
int new_col_idx = 0;
int new_row_idx = 0;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
struct row *new_row = new_grid[new_row_idx];
xassert(new_row == NULL);
new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
/* Start at the beginning of the old grid's scrollback. That is,
* at the output that is *oldest* */
int offset = grid->offset + old_screen_rows;
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
/* Turn cursor coordinates into grid absolute coordinates */
struct coord cursor = grid->cursor.point;
cursor.row += grid->offset;
cursor.row &= old_rows - 1;
struct coord saved_cursor = grid->saved_cursor.point;
saved_cursor.row += grid->offset;
saved_cursor.row &= old_rows - 1;
size_t tp_count =
tracking_points_count +
1 + /* cursor */
1 + /* saved cursor */
!view_follows + /* viewport */
1; /* terminator */
struct coord *tracking_points[tp_count];
memcpy(tracking_points, _tracking_points, tracking_points_count * sizeof(_tracking_points[0]));
tracking_points[tracking_points_count] = &cursor;
tracking_points[tracking_points_count + 1] = &saved_cursor;
struct coord viewport = {0, grid->view};
if (!view_follows)
tracking_points[tracking_points_count + 2] = &viewport;
/* Not thread safe! */
tp_cmp_ctx.scrollback_start = offset;
tp_cmp_ctx.rows = old_rows;
qsort(
tracking_points, tp_count - 1, sizeof(tracking_points[0]), &tp_cmp);
/* NULL terminate */
struct coord terminator = {-1, -1};
tracking_points[tp_count - 1] = &terminator;
struct coord **next_tp = &tracking_points[0];
LOG_DBG("scrollback-start=%d", offset);
for (size_t i = 0; i < tp_count - 1; i++) {
LOG_DBG("TP #%zu: row=%d, col=%d",
i, tracking_points[i]->row, tracking_points[i]->col);
}
/*
* Walk the old grid
*/
for (int r = 0; r < old_rows; r++) {
const size_t old_row_idx = (offset + r) & (old_rows - 1);
/* Unallocated (empty) rows we can simply skip */
const struct row *old_row = old_grid[old_row_idx];
if (old_row == NULL)
continue;
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
tll_push_back(grid->sixel_images, sixel);
tll_remove(untranslated_sixels, it);
}
#define line_wrap() \
new_row = _line_wrap( \
grid, new_grid, new_row, &new_row_idx, &new_col_idx, \
new_rows, new_cols)
/* Find last non-empty cell */
int col_count = 0;
for (int c = old_cols - 1; c >= 0; c--) {
const struct cell *cell = &old_row->cells[c];
if (!(cell->wc == 0 || cell->wc == CELL_SPACER)) {
col_count = c + 1;
break;
}
}
if (!old_row->linebreak && col_count > 0) {
/* Don't truncate logical lines */
col_count = old_cols;
}
xassert(col_count >= 0 && col_count <= old_cols);
/* Do we have a (at least one) tracking point on this row */
struct coord *tp;
if (unlikely((*next_tp)->row == old_row_idx)) {
tp = *next_tp;
/* Find the *last* tracking point on this row */
struct coord *last_on_row = tp;
for (struct coord **iter = next_tp; (*iter)->row == old_row_idx; iter++)
last_on_row = *iter;
/* And make sure its end point is included in the col range */
xassert(last_on_row->row == old_row_idx);
col_count = max(col_count, last_on_row->col + 1);
} else
tp = NULL;
/* Does this row have any URIs? */
struct row_range *uri_range, *uri_range_terminator;
struct row_range *curly_range, *curly_range_terminator;
struct row_data *extra = old_row->extra;
if (extra != NULL && extra->uri_ranges.count > 0) {
uri_range = &extra->uri_ranges.v[0];
uri_range_terminator = &extra->uri_ranges.v[extra->uri_ranges.count];
/* Make sure the *last* URI range's end point is included
* in the copy */
const struct row_range *last_on_row =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
col_count = max(col_count, last_on_row->end + 1);
} else
uri_range = uri_range_terminator = NULL;
if (extra != NULL && extra->curly_ranges.count > 0) {
curly_range = &extra->curly_ranges.v[0];
curly_range_terminator = &extra->curly_ranges.v[extra->curly_ranges.count];
const struct row_range *last_on_row =
&extra->curly_ranges.v[extra->curly_ranges.count - 1];
col_count = max(col_count, last_on_row->end + 1);
} else
curly_range = curly_range_terminator = NULL;
for (int start = 0, left = col_count; left > 0;) {
int end;
bool tp_break = false;
bool uri_break = false;
bool curly_break = false;
bool ftcs_break = false;
/* Figure out where to end this chunk */
{
const int uri_col = uri_range != uri_range_terminator
? ((uri_range->start >= start ? uri_range->start : uri_range->end) + 1)
: INT_MAX;
const int curly_col = curly_range != curly_range_terminator
? ((curly_range->start >= start ? curly_range->start : curly_range->end) + 1)
: INT_MAX;
const int tp_col = tp != NULL ? tp->col + 1 : INT_MAX;
const int ftcs_col = old_row->shell_integration.cmd_start >= start
? old_row->shell_integration.cmd_start + 1
: old_row->shell_integration.cmd_end >= start
? old_row->shell_integration.cmd_end + 1
: INT_MAX;
end = min(col_count, min(min(tp_col, min(uri_col, curly_col)), ftcs_col));
uri_break = end == uri_col;
curly_break = end == curly_col;
tp_break = end == tp_col;
ftcs_break = end == ftcs_col;
}
int cols = end - start;
xassert(cols > 0);
xassert(start + cols <= old_cols);
/*
* Copy the row chunk to the new grid. Note that there may
* be fewer cells left on the new row than what we have in
* the chunk. I.e. the chunk may have to be split up into
* multiple memcpy:ies.
*/
for (int count = cols, from = start; count > 0;) {
xassert(new_col_idx <= new_cols);
int new_row_cells_left = new_cols - new_col_idx;
/* Row full, emit newline and get a new, fresh, row */
if (new_row_cells_left <= 0) {
line_wrap();
new_row_cells_left = new_cols;
}
/* Number of cells we can copy */
int amount = min(count, new_row_cells_left);
xassert(amount > 0);
/*
* If we're going to reach the end of the new row, we
* need to make sure we don't end in the middle of a
* multi-column character.
*/
int spacers = 0;
if (new_col_idx + amount >= new_cols) {
/*
* While the cell *after* the last cell is a CELL_SPACER
*
* This means we have a multi-column character
* that doesn't fit on the current row. We need to
* push it to the next row, and insert CELL_SPACER
* cells as padding.
*/
while (
unlikely(
amount > 1 &&
from + amount < old_cols &&
old_row->cells[from + amount].wc >= CELL_SPACER + 1))
{
amount--;
spacers++;
}
xassert(
amount == 1 ||
old_row->cells[from + amount - 1].wc <= CELL_SPACER + 1);
}
xassert(new_col_idx + amount <= new_cols);
xassert(from + amount <= old_cols);
if (from == 0)
new_row->shell_integration.prompt_marker = old_row->shell_integration.prompt_marker;
memcpy(
&new_row->cells[new_col_idx], &old_row->cells[from],
amount * sizeof(struct cell));
count -= amount;
from += amount;
new_col_idx += amount;
xassert(new_col_idx <= new_cols);
if (unlikely(spacers > 0)) {
xassert(new_col_idx + spacers == new_cols);
const struct cell *cell = &old_row->cells[from - 1];
for (int i = 0; i < spacers; i++, new_col_idx++) {
new_row->cells[new_col_idx].wc = CELL_SPACER;
new_row->cells[new_col_idx].attrs = cell->attrs;
}
}
}
xassert(new_col_idx > 0);
if (tp_break) {
do {
xassert(tp != NULL);
xassert(tp->row == old_row_idx);
xassert(tp->col == end - 1);
tp->row = new_row_idx;
tp->col = new_col_idx - 1;
next_tp++;
tp = *next_tp;
} while (tp->row == old_row_idx && tp->col == end - 1);
if (tp->row != old_row_idx)
tp = NULL;
LOG_DBG("next TP (tp=%p): %dx%d",
(void*)tp, (*next_tp)->row, (*next_tp)->col);
}
if (uri_break) {
xassert(uri_range != NULL);
if (uri_range->start == end - 1)
reflow_uri_range_start(uri_range, new_row, new_col_idx - 1);
if (uri_range->end == end - 1) {
reflow_uri_range_end(uri_range, new_row, new_col_idx - 1);
grid_row_uri_range_destroy(uri_range);
uri_range++;
}
}
if (curly_break) {
xassert(curly_range != NULL);
if (curly_range->start == end - 1)
reflow_curly_range_start(curly_range, new_row, new_col_idx - 1);
if (curly_range->end == end - 1) {
reflow_curly_range_end(curly_range, new_row, new_col_idx - 1);
grid_row_curly_range_destroy(curly_range);
curly_range++;
}
}
if (ftcs_break) {
xassert(old_row->shell_integration.cmd_start == start + cols - 1 ||
old_row->shell_integration.cmd_end == start + cols - 1);
if (old_row->shell_integration.cmd_start == start + cols - 1)
new_row->shell_integration.cmd_start = new_col_idx - 1;
if (old_row->shell_integration.cmd_end == start + cols - 1)
new_row->shell_integration.cmd_end = new_col_idx - 1;
}
left -= cols;
start += cols;
}
if (old_row->linebreak) {
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
new_row->linebreak = true;
if (r + 1 < old_rows)
line_wrap();
else if (new_row->extra != NULL) {
if (new_row->extra->uri_ranges.count > 0) {
/*
* line_wrap() "closes" still-open URIs. Since
* this is the *last* row, and since we're
* line-breaking due to a hard line-break (rather
* than running out of cells in the "new_row"),
* there shouldn't be an open URI (it would have
* been closed when we reached the end of the URI
* while reflowing the last "old" row).
*/
int last_idx = new_row->extra->uri_ranges.count - 1;
xassert(new_row->extra->uri_ranges.v[last_idx].end >= 0);
}
if (new_row->extra->curly_ranges.count > 0) {
int last_idx = new_row->extra->curly_ranges.count - 1;
xassert(new_row->extra->curly_ranges.v[last_idx].end >= 0);
}
}
}
grid_row_free(old_grid[old_row_idx]);
grid->rows[old_row_idx] = NULL;
#undef line_wrap
}
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
for (struct coord **tp = next_tp; *tp != &terminator; tp++) {
LOG_DBG("TP: row=%d, col=%d (old cols: %d, new cols: %d)",
(*tp)->row, (*tp)->col, old_cols, new_cols);
}
xassert(old_rows == 0 || *next_tp == &terminator);
#if defined(_DEBUG)
/* Verify all URI ranges have been "closed" */
for (int r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
for (size_t i = 0; i < row->extra->uri_ranges.count; i++)
xassert(row->extra->uri_ranges.v[i].end >= 0);
for (size_t i = 0; i < row->extra->curly_ranges.count; i++)
xassert(row->extra->curly_ranges.v[i].end >= 0);
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
/* Verify all old rows have been free:d */
for (int i = 0; i < old_rows; i++)
xassert(grid->rows[i] == NULL);
#endif
/* Set offset such that the last reflowed row is at the bottom */
grid->offset = new_row_idx - new_screen_rows + 1;
while (grid->offset < 0)
grid->offset += new_rows;
while (new_grid[grid->offset] == NULL)
grid->offset = (grid->offset + 1) & (new_rows - 1);
/* Ensure all visible rows have been allocated */
for (int r = 0; r < new_screen_rows; r++) {
int idx = (grid->offset + r) & (new_rows - 1);
if (new_grid[idx] == NULL)
new_grid[idx] = grid_row_alloc(new_cols, true);
}
/* Free old grid (rows already free:d) */
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
/*
* Set new viewport, making sure it's not too far down.
*
* This is done by using scrollback-start relative cooardinates,
* and bounding the new viewport to (grid_rows - screen_rows).
*/
int sb_view = grid_row_abs_to_sb(
grid, new_screen_rows, view_follows ? grid->offset : viewport.row);
grid->view = grid_row_sb_to_abs(
grid, new_screen_rows, min(sb_view, new_rows - new_screen_rows));
/* Convert absolute coordinates to screen relative */
cursor.row -= grid->offset;
while (cursor.row < 0)
cursor.row += grid->num_rows;
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
saved_cursor.row -= grid->offset;
while (saved_cursor.row < 0)
saved_cursor.row += grid->num_rows;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
xassert(grid->cur_row != NULL);
grid->cursor.point = cursor;
grid->saved_cursor.point = saved_cursor;
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec stop;
clock_gettime(CLOCK_MONOTONIC, &stop);
struct timespec diff;
timespec_sub(&stop, &start, &diff);
LOG_INFO("reflowed %d -> %d rows in %lds %ldns",
old_rows, new_rows,
(long)diff.tv_sec,
diff.tv_nsec);
#endif
}
void
grid_row_uri_range_put(struct row *row, int col, const char *uri, uint64_t id)
{
ensure_row_has_extra_data(row);
size_t insert_idx = 0;
bool replace = false;
bool run_merge_pass = false;
struct row_data *extra = row->extra;
for (int i = extra->uri_ranges.count - 1; i >= 0; i--) {
struct row_range *r = &extra->uri_ranges.v[i];
const bool matching_id = r->uri.id == id;
if (matching_id && r->end + 1 == col) {
/* Extend existing URI's tail */
r->end++;
goto out;
}
else if (r->end < col) {
insert_idx = i + 1;
break;
}
else if (r->start > col)
continue;
else {
xassert(r->start <= col);
xassert(r->end >= col);
if (matching_id)
goto out;
if (r->start == r->end) {
replace = true;
run_merge_pass = true;
insert_idx = i;
} else if (r->start == col) {
run_merge_pass = true;
r->start++;
insert_idx = i;
} else if (r->end == col) {
run_merge_pass = true;
r->end--;
insert_idx = i + 1;
} else {
xassert(r->start < col);
xassert(r->end > col);
uri_range_insert(
&extra->uri_ranges, i + 1, col + 1, r->end, r->uri.id, r->uri.uri);
/* The insertion may xrealloc() the vector, making our
* 'old' pointer invalid */
r = &extra->uri_ranges.v[i];
r->end = col - 1;
xassert(r->start <= r->end);
insert_idx = i + 1;
}
break;
}
}
xassert(insert_idx <= extra->uri_ranges.count);
if (replace) {
grid_row_uri_range_destroy(&extra->uri_ranges.v[insert_idx]);
extra->uri_ranges.v[insert_idx] = (struct row_range){
.start = col,
.end = col,
.uri = {
.id = id,
.uri = xstrdup(uri),
},
};
} else
uri_range_insert(&extra->uri_ranges, insert_idx, col, col, id, uri);
if (run_merge_pass) {
for (size_t i = 1; i < extra->uri_ranges.count; i++) {
struct row_range *r1 = &extra->uri_ranges.v[i - 1];
struct row_range *r2 = &extra->uri_ranges.v[i];
if (r1->uri.id == r2->uri.id && r1->end + 1 == r2->start) {
r1->end = r2->end;
range_delete(&extra->uri_ranges, ROW_RANGE_URI, i);
i--;
}
}
}
out:
verify_no_overlapping_ranges(extra);
verify_ranges_are_sorted(extra);
}
void
grid_row_curly_range_put(struct row *row, int col, struct curly_range_data data)
{
ensure_row_has_extra_data(row);
size_t insert_idx = 0;
bool replace = false;
bool run_merge_pass = false;
struct row_data *extra = row->extra;
for (int i = extra->curly_ranges.count - 1; i >= 0; i--) {
struct row_range *r = &extra->curly_ranges.v[i];
const bool matching = r->curly.style == data.style &&
r->curly.color_src == data.color_src &&
r->curly.color == data.color;
if (matching && r->end + 1 == col) {
/* Extend existing curly tail */
r->end++;
goto out;
}
else if (r->end < col) {
insert_idx = i + 1;
break;
}
else if (r->start > col)
continue;
else {
xassert(r->start <= col);
xassert(r->end >= col);
if (matching)
goto out;
if (r->start == r->end) {
replace = true;
run_merge_pass = true;
insert_idx = i;
} else if (r->start == col) {
run_merge_pass = true;
r->start++;
insert_idx = i;
} else if (r->end == col) {
run_merge_pass = true;
r->end--;
insert_idx = i + 1;
} else {
xassert(r->start < col);
xassert(r->end > col);
curly_range_insert(
&extra->curly_ranges, i + 1, col + 1, r->end, data);
/* The insertion may xrealloc() the vector, making our
* 'old' pointer invalid */
r = &extra->curly_ranges.v[i];
r->end = col - 1;
xassert(r->start <= r->end);
insert_idx = i + 1;
}
break;
}
}
xassert(insert_idx <= extra->curly_ranges.count);
if (replace) {
grid_row_curly_range_destroy(&extra->curly_ranges.v[insert_idx]);
extra->curly_ranges.v[insert_idx] = (struct row_range){
.start = col,
.end = col,
.curly = data,
};
} else
curly_range_insert(&extra->curly_ranges, insert_idx, col, col, data);
if (run_merge_pass) {
for (size_t i = 1; i < extra->curly_ranges.count; i++) {
struct row_range *r1 = &extra->curly_ranges.v[i - 1];
struct row_range *r2 = &extra->curly_ranges.v[i];
if (r1->curly.style == r2->curly.style &&
r1->curly.color_src == r2->curly.color_src &&
r1->curly.color == r2->curly.color &&
r1->end + 1 == r2->start)
{
r1->end = r2->end;
range_delete(&extra->curly_ranges, ROW_RANGE_CURLY, i);
i--;
}
}
}
out:
verify_no_overlapping_ranges(extra);
verify_ranges_are_sorted(extra);
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
#define verify_range(idx, _start, _end, _id) \
do { \
xassert(idx < row_data.uri_ranges.count); \
xassert(row_data.uri_ranges.v[idx].start == _start); \
xassert(row_data.uri_ranges.v[idx].end == _end); \
xassert(row_data.uri_ranges.v[idx].uri.id == _id); \
} while (0)
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 1, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 2, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 3, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* No-op */
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* Replace head */
grid_row_uri_range_put(&row, 0, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 3, 123);
/* Replace tail */
grid_row_uri_range_put(&row, 3, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 2, 123);
verify_range(2, 3, 3, 789);
/* Replace tail + extend head */
grid_row_uri_range_put(&row, 2, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 1, 123);
verify_range(2, 2, 3, 789);
/* Replace + extend tail */
grid_row_uri_range_put(&row, 1, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 1, 456);
verify_range(1, 2, 3, 789);
/* Replace + extend, then splice */
grid_row_uri_range_put(&row, 1, "http://tail", 789);
grid_row_uri_range_put(&row, 2, "http://splice", 000);
xassert(row_data.uri_ranges.count == 4);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 1, 789);
verify_range(2, 2, 2, 000);
verify_range(3, 3, 3, 789);
for (size_t i = 0; i < row_data.uri_ranges.count; i++)
grid_row_uri_range_destroy(&row_data.uri_ranges.v[i]);
free(row_data.uri_ranges.v);
#undef verify_range
}
static void
grid_row_range_erase(struct row_ranges *ranges, enum row_range_type type,
int start, int end)
{
xassert(start <= end);
/* Split up, or remove, URI ranges affected by the erase */
for (int i = ranges->count - 1; i >= 0; i--) {
struct row_range *old = &ranges->v[i];
if (old->end < start)
return;
if (old->start > end)
continue;
if (start <= old->start && end >= old->end) {
/* Erase range covers URI completely - remove it */
range_delete(ranges, type, i);
}
else if (start > old->start && end < old->end) {
/* Erase range erases a part in the middle of the URI */
switch (type) {
case ROW_RANGE_URI:
uri_range_insert(
ranges, i + 1, end + 1, old->end, old->uri.id, old->uri.uri);
break;
case ROW_RANGE_CURLY:
curly_range_insert(ranges, i + 1, end + 1, old->end, old->curly);
break;
}
/* The insertion may xrealloc() the vector, making our
* 'old' pointer invalid */
old = &ranges->v[i];
old->end = start - 1;
return; /* There can be no more URIs affected by the erase range */
}
else if (start <= old->start && end >= old->start) {
/* Erase range erases the head of the URI */
xassert(start <= old->start);
old->start = end + 1;
}
else if (start <= old->end && end >= old->end) {
/* Erase range erases the tail of the URI */
xassert(end >= old->end);
old->end = start - 1;
return; /* There can be no more overlapping URIs */
}
}
}
void
grid_row_uri_range_erase(struct row *row, int start, int end)
{
xassert(row->extra != NULL);
grid_row_range_erase(&row->extra->uri_ranges, ROW_RANGE_URI, start, end);
}
void
grid_row_curly_range_erase(struct row *row, int start, int end)
{
xassert(row->extra != NULL);
grid_row_range_erase(&row->extra->curly_ranges, ROW_RANGE_CURLY, start, end);
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
/* Try erasing a row without any URIs */
grid_row_uri_range_erase(&row, 0, 200);
xassert(row_data.uri_ranges.count == 0);
uri_range_append(&row_data, 1, 10, 0, "dummy");
uri_range_append(&row_data, 11, 20, 0, "dummy");
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[1].start == 11);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
/* Erase both URis */
grid_row_uri_range_erase(&row, 1, 20);
xassert(row_data.uri_ranges.count == 0);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
/* Two URIs, then erase second half of the first, first half of
the second */
uri_range_append(&row_data, 1, 10, 0, "dummy");
uri_range_append(&row_data, 11, 20, 0, "dummy");
grid_row_uri_range_erase(&row, 5, 15);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 16);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
grid_row_range_destroy(&row_data.uri_ranges.v[0], ROW_RANGE_URI);
grid_row_range_destroy(&row_data.uri_ranges.v[1], ROW_RANGE_URI);
row_data.uri_ranges.count = 0;
/* One URI, erase middle part of it */
uri_range_append(&row_data, 1, 10, 0, "dummy");
grid_row_uri_range_erase(&row, 5, 6);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 7);
xassert(row_data.uri_ranges.v[1].end == 10);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
grid_row_range_destroy(&row_data.uri_ranges.v[0], ROW_RANGE_URI);
grid_row_range_destroy(&row_data.uri_ranges.v[1], ROW_RANGE_URI);
row_data.uri_ranges.count = 0;
/*
* Regression test: erasing the middle part of an URI causes us to
* insert a new URI (we split the partly erased URI into two).
*
* The insertion logic typically triggers an xrealloc(), which, in
* some cases, *moves* the entire URI vector to a new base
* address. grid_row_uri_range_erase() did not account for this,
* and tried to update the 'end' member in the URI range we just
* split. This causes foot to crash when the xrealloc() has moved
* the URI range vector.
*
* (note: we're only verifying we don't crash here, hence the lack
* of assertions).
*/
free(row_data.uri_ranges.v);
row_data.uri_ranges.v = NULL;
row_data.uri_ranges.size = 0;
uri_range_append(&row_data, 1, 10, 0, "dummy");
xassert(row_data.uri_ranges.size == 1);
grid_row_uri_range_erase(&row, 5, 7);
xassert(row_data.uri_ranges.count == 2);
grid_row_ranges_destroy(&row_data.uri_ranges, ROW_RANGE_URI);
free(row_data.uri_ranges.v);
}