foot/grid.c
Daniel Eklöf 1111f7e918
grid: reflow: handle composed characters longer than 2 cells
The logic that tries to ensure we don't break a line in the middle of
a multi-cell character was flawed when the number of cells were larger
than 2.

In particular, if the number of cells to copy were limited by the
number of cells left on the current (new) line, and were less than the
length of the multi-cell character, then we failed to insert the
correct number of spacers, and also ended up misplacing the multi-cell
character; instead of pushing it to the next line, it was inserted on
the current line, even though it doesn't fit.

Also change how trailing SPACER cells are rendered (cells that are
"fillers" at then end of a line, when a multi-column character was
pushed over to the next line): don't copy the previous cell's
attributes (which may be wrong anyway), use default attributes
instead.
2025-02-06 07:42:38 +01:00

1695 lines
54 KiB
C

#include "grid.h"
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#define LOG_MODULE "grid"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "debug.h"
#include "macros.h"
#include "sixel.h"
#include "stride.h"
#include "util.h"
#include "xmalloc.h"
#define TIME_REFLOW 0
/*
* "sb" (scrollback relative) coordinates
*
* The scrollback relative row number 0 is the *first*, and *oldest*
* row in the scrollback history (and thus the *first* row to be
* scrolled out). Thus, a higher number means further *down* in the
* scrollback, with the *highest* number being at the bottom of the
* screen, where new input appears.
*/
int
grid_row_abs_to_sb(const struct grid *grid, int screen_rows, int abs_row)
{
const int scrollback_start = grid->offset + screen_rows;
int rebased_row = abs_row - scrollback_start + grid->num_rows;
rebased_row &= grid->num_rows - 1;
return rebased_row;
}
int
grid_row_sb_to_abs(const struct grid *grid, int screen_rows, int sb_rel_row)
{
const int scrollback_start = grid->offset + screen_rows;
int abs_row = sb_rel_row + scrollback_start;
abs_row &= grid->num_rows - 1;
return abs_row;
}
int
grid_sb_start_ignore_uninitialized(const struct grid *grid, int screen_rows)
{
int scrollback_start = grid->offset + screen_rows;
scrollback_start &= grid->num_rows - 1;
while (grid->rows[scrollback_start] == NULL) {
scrollback_start++;
scrollback_start &= grid->num_rows - 1;
}
return scrollback_start;
}
int
grid_row_abs_to_sb_precalc_sb_start(const struct grid *grid, int sb_start,
int abs_row)
{
int rebased_row = abs_row - sb_start + grid->num_rows;
rebased_row &= grid->num_rows - 1;
return rebased_row;
}
int
grid_row_sb_to_abs_precalc_sb_start(const struct grid *grid, int sb_start,
int sb_rel_row)
{
int abs_row = sb_rel_row + sb_start;
abs_row &= grid->num_rows - 1;
return abs_row;
}
static void
ensure_row_has_extra_data(struct row *row)
{
if (row->extra == NULL)
row->extra = xcalloc(1, sizeof(*row->extra));
}
static void
verify_no_overlapping_ranges_of_type(const struct row_ranges *ranges,
enum row_range_type type)
{
#if defined(_DEBUG)
for (size_t i = 0; i < ranges->count; i++) {
const struct row_range *r1 = &ranges->v[i];
for (size_t j = i + 1; j < ranges->count; j++) {
const struct row_range *r2 = &ranges->v[j];
xassert(r1 != r2);
if ((r1->start <= r2->start && r1->end >= r2->start) ||
(r1->start <= r2->end && r1->end >= r2->end))
{
switch (type) {
case ROW_RANGE_URI:
BUG("OSC-8 URI overlap: %s: %d-%d: %s: %d-%d",
r1->uri.uri, r1->start, r1->end,
r2->uri.uri, r2->start, r2->end);
break;
case ROW_RANGE_UNDERLINE:
BUG("underline overlap: %d-%d, %d-%d",
r1->start, r1->end, r2->start, r2->end);
break;
}
}
}
}
#endif
}
static void
verify_no_overlapping_ranges(const struct row_data *extra)
{
verify_no_overlapping_ranges_of_type(&extra->uri_ranges, ROW_RANGE_URI);
verify_no_overlapping_ranges_of_type(&extra->underline_ranges, ROW_RANGE_UNDERLINE);
}
static void
verify_ranges_of_type_are_sorted(const struct row_ranges *ranges,
enum row_range_type type)
{
#if defined(_DEBUG)
const struct row_range *last = NULL;
for (size_t i = 0; i < ranges->count; i++) {
const struct row_range *r = &ranges->v[i];
if (last != NULL) {
if (last->start >= r->start || last->end >= r->end) {
switch (type) {
case ROW_RANGE_URI:
BUG("OSC-8 URI not sorted correctly: "
"%s: %d-%d came before %s: %d-%d",
last->uri.uri, last->start, last->end,
r->uri.uri, r->start, r->end);
break;
case ROW_RANGE_UNDERLINE:
BUG("underline ranges not sorted correctly: "
"%d-%d came before %d-%d",
last->start, last->end, r->start, r->end);
break;
}
}
}
last = r;
}
#endif
}
static void
verify_ranges_are_sorted(const struct row_data *extra)
{
verify_ranges_of_type_are_sorted(&extra->uri_ranges, ROW_RANGE_URI);
verify_ranges_of_type_are_sorted(&extra->underline_ranges, ROW_RANGE_UNDERLINE);
}
static void
range_ensure_size(struct row_ranges *ranges, int count_to_add)
{
if (ranges->count + count_to_add > ranges->size) {
ranges->size = ranges->count + count_to_add;
ranges->v = xrealloc(ranges->v, ranges->size * sizeof(ranges->v[0]));
}
xassert(ranges->count + count_to_add <= ranges->size);
}
/*
* Be careful! This function may xrealloc() the URI range vector, thus
* invalidating pointers into it.
*/
static void
range_insert(struct row_ranges *ranges, size_t idx, int start, int end,
enum row_range_type type, const union row_range_data *data)
{
range_ensure_size(ranges, 1);
xassert(idx <= ranges->count);
const size_t move_count = ranges->count - idx;
memmove(&ranges->v[idx + 1],
&ranges->v[idx],
move_count * sizeof(ranges->v[0]));
ranges->count++;
struct row_range *r = &ranges->v[idx];
r->start = start;
r->end = end;
switch (type) {
case ROW_RANGE_URI:
r->uri.id = data->uri.id;
r->uri.uri = xstrdup(data->uri.uri);
break;
case ROW_RANGE_UNDERLINE:
r->underline = data->underline;
break;
}
}
static void
range_append_by_ref(struct row_ranges *ranges, int start, int end,
enum row_range_type type, const union row_range_data *data)
{
range_ensure_size(ranges, 1);
struct row_range *r = &ranges->v[ranges->count++];
r->start = start;
r->end = end;
switch (type) {
case ROW_RANGE_URI:
r->uri.id = data->uri.id;;
r->uri.uri = data->uri.uri;
break;
case ROW_RANGE_UNDERLINE:
r->underline = data->underline;
break;
}
}
static void
range_append(struct row_ranges *ranges, int start, int end,
enum row_range_type type, const union row_range_data *data)
{
switch (type) {
case ROW_RANGE_URI:
range_append_by_ref(
ranges, start, end, type,
&(union row_range_data){.uri = {.id = data->uri.id,
.uri = xstrdup(data->uri.uri)}});
break;
case ROW_RANGE_UNDERLINE:
range_append_by_ref(ranges, start, end, type, data);
break;
}
}
static void
range_delete(struct row_ranges *ranges, enum row_range_type type, size_t idx)
{
xassert(idx < ranges->count);
grid_row_range_destroy(&ranges->v[idx], type);
const size_t move_count = ranges->count - idx - 1;
memmove(&ranges->v[idx],
&ranges->v[idx + 1],
move_count * sizeof(ranges->v[0]));
ranges->count--;
}
struct grid *
grid_snapshot(const struct grid *grid)
{
struct grid *clone = xmalloc(sizeof(*clone));
clone->num_rows = grid->num_rows;
clone->num_cols = grid->num_cols;
clone->offset = grid->offset;
clone->view = grid->view;
clone->cursor = grid->cursor;
clone->saved_cursor = grid->saved_cursor;
clone->kitty_kbd = grid->kitty_kbd;
clone->rows = xcalloc(grid->num_rows, sizeof(clone->rows[0]));
memset(&clone->scroll_damage, 0, sizeof(clone->scroll_damage));
memset(&clone->sixel_images, 0, sizeof(clone->sixel_images));
tll_foreach(grid->scroll_damage, it)
tll_push_back(clone->scroll_damage, it->item);
for (int r = 0; r < grid->num_rows; r++) {
const struct row *row = grid->rows[r];
if (row == NULL)
continue;
struct row *clone_row = xmalloc(sizeof(*row));
clone->rows[r] = clone_row;
clone_row->cells = xmalloc(grid->num_cols * sizeof(clone_row->cells[0]));
clone_row->linebreak = row->linebreak;
clone_row->dirty = row->dirty;
clone_row->shell_integration = row->shell_integration;
for (int c = 0; c < grid->num_cols; c++)
clone_row->cells[c] = row->cells[c];
const struct row_data *extra = row->extra;
if (extra != NULL) {
struct row_data *clone_extra = xcalloc(1, sizeof(*clone_extra));
clone_row->extra = clone_extra;
range_ensure_size(&clone_extra->uri_ranges, extra->uri_ranges.count);
range_ensure_size(&clone_extra->underline_ranges, extra->underline_ranges.count);
for (int i = 0; i < extra->uri_ranges.count; i++) {
const struct row_range *range = &extra->uri_ranges.v[i];
range_append(
&clone_extra->uri_ranges,
range->start, range->end, ROW_RANGE_URI, &range->data);
}
for (int i = 0; i < extra->underline_ranges.count; i++) {
const struct row_range *range = &extra->underline_ranges.v[i];
range_append_by_ref(
&clone_extra->underline_ranges, range->start, range->end,
ROW_RANGE_UNDERLINE, &range->data);
}
} else
clone_row->extra = NULL;
}
tll_foreach(grid->sixel_images, it) {
int original_width = it->item.original.width;
int original_height = it->item.original.height;
pixman_image_t *original_pix = it->item.original.pix;
pixman_format_code_t original_pix_fmt = pixman_image_get_format(original_pix);
int original_stride = stride_for_format_and_width(original_pix_fmt, original_width);
size_t original_size = original_stride * original_height;
void *new_original_data = xmemdup(it->item.original.data, original_size);
pixman_image_t *new_original_pix = pixman_image_create_bits_no_clear(
original_pix_fmt, original_width, original_height,
new_original_data, original_stride);
void *new_scaled_data = NULL;
pixman_image_t *new_scaled_pix = NULL;
int scaled_width = -1;
int scaled_height = -1;
if (it->item.scaled.data != NULL) {
scaled_width = it->item.scaled.width;
scaled_height = it->item.scaled.height;
pixman_image_t *scaled_pix = it->item.scaled.pix;
pixman_format_code_t scaled_pix_fmt = pixman_image_get_format(scaled_pix);
int scaled_stride = stride_for_format_and_width(scaled_pix_fmt, scaled_width);
size_t scaled_size = scaled_stride * scaled_height;
new_scaled_data = xmemdup(it->item.scaled.data, scaled_size);
new_scaled_pix = pixman_image_create_bits_no_clear(
scaled_pix_fmt, scaled_width, scaled_height, new_scaled_data,
scaled_stride);
}
struct sixel six = {
.pix = (it->item.pix == it->item.original.pix
? new_original_pix
: (it->item.pix == it->item.scaled.pix
? new_scaled_pix
: NULL)),
.width = it->item.width,
.height = it->item.height,
.rows = it->item.rows,
.cols = it->item.cols,
.pos = it->item.pos,
.opaque = it->item.opaque,
.cell_width = it->item.cell_width,
.cell_height = it->item.cell_height,
.original = {
.data = new_original_data,
.pix = new_original_pix,
.width = original_width,
.height = original_height,
},
.scaled = {
.data = new_scaled_data,
.pix = new_scaled_pix,
.width = scaled_width,
.height = scaled_height,
},
};
tll_push_back(clone->sixel_images, six);
}
return clone;
}
void
grid_free(struct grid *grid)
{
if (grid == NULL)
return;
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(grid->rows[r]);
tll_foreach(grid->sixel_images, it) {
sixel_destroy(&it->item);
tll_remove(grid->sixel_images, it);
}
free(grid->rows);
tll_free(grid->scroll_damage);
}
void
grid_swap_row(struct grid *grid, int row_a, int row_b)
{
xassert(grid->offset >= 0);
xassert(row_a != row_b);
int real_a = (grid->offset + row_a) & (grid->num_rows - 1);
int real_b = (grid->offset + row_b) & (grid->num_rows - 1);
struct row *a = grid->rows[real_a];
struct row *b = grid->rows[real_b];
grid->rows[real_a] = b;
grid->rows[real_b] = a;
}
struct row *
grid_row_alloc(int cols, bool initialize)
{
struct row *row = xmalloc(sizeof(*row));
row->dirty = false;
row->linebreak = false;
row->extra = NULL;
row->shell_integration.prompt_marker = false;
row->shell_integration.cmd_start = -1;
row->shell_integration.cmd_end = -1;
if (initialize) {
row->cells = xcalloc(cols, sizeof(row->cells[0]));
for (size_t c = 0; c < cols; c++)
row->cells[c].attrs.clean = 1;
} else
row->cells = xmalloc(cols * sizeof(row->cells[0]));
return row;
}
void
grid_row_free(struct row *row)
{
if (row == NULL)
return;
grid_row_reset_extra(row);
free(row->extra);
free(row->cells);
free(row);
}
void
grid_resize_without_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows)
{
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
int new_offset = 0;
/* Copy old lines, truncating them if old rows were longer */
for (int r = 0, n = min(old_screen_rows, new_screen_rows); r < n; r++) {
const int old_row_idx = (grid->offset + r) & (old_rows - 1);
const int new_row_idx = (new_offset + r) & (new_rows - 1);
const struct row *old_row = old_grid[old_row_idx];
xassert(old_row != NULL);
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
memcpy(new_row->cells,
old_row->cells,
sizeof(struct cell) * min(old_cols, new_cols));
new_row->dirty = old_row->dirty;
new_row->linebreak = false;
new_row->shell_integration.prompt_marker = old_row->shell_integration.prompt_marker;
new_row->shell_integration.cmd_start = min(old_row->shell_integration.cmd_start, new_cols - 1);
new_row->shell_integration.cmd_end = min(old_row->shell_integration.cmd_end, new_cols - 1);
if (new_cols > old_cols) {
/* Clear "new" columns */
memset(&new_row->cells[old_cols], 0,
sizeof(struct cell) * (new_cols - old_cols));
new_row->dirty = true;
} else if (old_cols > new_cols) {
/* Make sure we don't cut a multi-column character in two */
for (int i = new_cols; i > 0 && old_row->cells[i].wc > CELL_SPACER; i--)
new_row->cells[i - 1].wc = 0;
}
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
if (sixel.pos.col < new_cols)
tll_push_back(grid->sixel_images, sixel);
else
sixel_destroy(&it->item);
tll_remove(untranslated_sixels, it);
}
/* Copy URI ranges, truncating them if necessary */
const struct row_data *old_extra = old_row->extra;
if (old_extra == NULL)
continue;
ensure_row_has_extra_data(new_row);
struct row_data *new_extra = new_row->extra;
range_ensure_size(&new_extra->uri_ranges, old_extra->uri_ranges.count);
range_ensure_size(&new_extra->underline_ranges, old_extra->underline_ranges.count);
for (int i = 0; i < old_extra->uri_ranges.count; i++) {
const struct row_range *range = &old_extra->uri_ranges.v[i];
if (range->start >= new_cols) {
/* The whole range is truncated */
continue;
}
const int start = range->start;
const int end = min(range->end, new_cols - 1);
range_append(&new_extra->uri_ranges, start, end, ROW_RANGE_URI, &range->data);
}
for (int i = 0; i < old_extra->underline_ranges.count; i++) {
const struct row_range *range = &old_extra->underline_ranges.v[i];
if (range->start >= new_cols) {
/* The whole range is truncated */
continue;
}
const int start = range->start;
const int end = min(range->end, new_cols - 1);
range_append_by_ref(&new_extra->underline_ranges, start, end, ROW_RANGE_UNDERLINE, &range->data);
}
}
/* Clear "new" lines */
for (int r = min(old_screen_rows, new_screen_rows); r < new_screen_rows; r++) {
struct row *new_row = grid_row_alloc(new_cols, false);
new_grid[(new_offset + r) & (new_rows - 1)] = new_row;
memset(new_row->cells, 0, sizeof(struct cell) * new_cols);
new_row->dirty = true;
}
#if defined(_DEBUG)
for (size_t r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
#endif
/* Free old grid */
for (int r = 0; r < grid->num_rows; r++)
grid_row_free(old_grid[r]);
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
grid->view = grid->offset = new_offset;
/* Keep cursor at current position, but clamp to new dimensions */
struct coord cursor = grid->cursor.point;
if (cursor.row == old_screen_rows - 1) {
/* 'less' breaks if the cursor isn't at the bottom */
cursor.row = new_screen_rows - 1;
}
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
grid->cursor.point = cursor;
struct coord saved_cursor = grid->saved_cursor.point;
if (saved_cursor.row == old_screen_rows - 1)
saved_cursor.row = new_screen_rows - 1;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->saved_cursor.point = saved_cursor;
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
xassert(grid->cur_row != NULL);
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(_DEBUG)
for (int r = 0; r < new_screen_rows; r++)
grid_row_in_view(grid, r);
#endif
}
static void
reflow_range_start(struct row_range *range, enum row_range_type type,
struct row *new_row, int new_col_idx)
{
ensure_row_has_extra_data(new_row);
struct row_ranges *new_ranges = NULL;
switch (type) {
case ROW_RANGE_URI: new_ranges = &new_row->extra->uri_ranges; break;
case ROW_RANGE_UNDERLINE: new_ranges = &new_row->extra->underline_ranges; break;
}
if (new_ranges == NULL)
BUG("unhandled range type");
range_append_by_ref(new_ranges, new_col_idx, -1, type, &range->data);
switch (type) {
case ROW_RANGE_URI: range->uri.uri = NULL; break; /* Owned by new_ranges */
case ROW_RANGE_UNDERLINE: break;
}
}
static void
reflow_range_end(struct row_range *range, enum row_range_type type,
struct row *new_row, int new_col_idx)
{
struct row_data *extra = new_row->extra;
struct row_ranges *ranges = NULL;
switch (type) {
case ROW_RANGE_URI: ranges = &extra->uri_ranges; break;
case ROW_RANGE_UNDERLINE: ranges = &extra->underline_ranges; break;
}
if (ranges == NULL)
BUG("unhandled range type");
xassert(ranges->count > 0);
struct row_range *new_range = &ranges->v[ranges->count - 1];
xassert(new_range->end < 0);
switch (type) {
case ROW_RANGE_URI:
xassert(new_range->uri.id == range->uri.id);
break;
case ROW_RANGE_UNDERLINE:
xassert(new_range->underline.style == range->underline.style);
xassert(new_range->underline.color_src == range->underline.color_src);
xassert(new_range->underline.color == range->underline.color);
break;
}
new_range->end = new_col_idx;
}
static struct row *
_line_wrap(struct grid *old_grid, struct row **new_grid, struct row *row,
int *row_idx, int *col_idx, int row_count, int col_count)
{
*col_idx = 0;
*row_idx = (*row_idx + 1) & (row_count - 1);
struct row *new_row = new_grid[*row_idx];
if (new_row == NULL) {
/* Scrollback not yet full, allocate a completely new row */
new_row = grid_row_alloc(col_count, false);
new_grid[*row_idx] = new_row;
} else {
/* Scrollback is full, need to reuse a row */
grid_row_reset_extra(new_row);
new_row->linebreak = false;
new_row->shell_integration.prompt_marker = false;
new_row->shell_integration.cmd_start = -1;
new_row->shell_integration.cmd_end = -1;
tll_foreach(old_grid->sixel_images, it) {
if (it->item.pos.row == *row_idx) {
sixel_destroy(&it->item);
tll_remove(old_grid->sixel_images, it);
}
}
/*
* TODO: detect if the reused row is covered by the
* selection. Of so, cancel the selection. The problem: we
* don't know if we've translated the selection coordinates
* yet.
*/
}
struct row_data *extra = row->extra;
if (extra == NULL)
return new_row;
/*
* URI ranges are per row. Thus, we need to 'close' the still-open
* ranges on the previous row, and re-open them on the
* next/current row.
*/
if (extra->uri_ranges.count > 0) {
struct row_range *range =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
if (range->end < 0) {
/* Terminate URI range on the previous row */
range->end = col_count - 1;
/* Open a new range on the new/current row */
ensure_row_has_extra_data(new_row);
range_append(&new_row->extra->uri_ranges, 0, -1,
ROW_RANGE_URI, &range->data);
}
}
if (extra->underline_ranges.count > 0) {
struct row_range *range =
&extra->underline_ranges.v[extra->underline_ranges.count - 1];
if (range->end < 0) {
/* Terminate URI range on the previous row */
range->end = col_count - 1;
/* Open a new range on the new/current row */
ensure_row_has_extra_data(new_row);
range_append(&new_row->extra->underline_ranges, 0, -1,
ROW_RANGE_UNDERLINE, &range->data);
}
}
return new_row;
}
static struct {
int scrollback_start;
int rows;
} tp_cmp_ctx;
static int
tp_cmp(const void *_a, const void *_b)
{
const struct coord *a = *(const struct coord **)_a;
const struct coord *b = *(const struct coord **)_b;
int scrollback_start = tp_cmp_ctx.scrollback_start;
int num_rows = tp_cmp_ctx.rows;
int a_row = (a->row - scrollback_start + num_rows) & (num_rows - 1);
int b_row = (b->row - scrollback_start + num_rows) & (num_rows - 1);
xassert(a_row >= 0);
xassert(a_row < num_rows || num_rows == 0);
xassert(b_row >= 0);
xassert(b_row < num_rows || num_rows == 0);
if (a_row < b_row)
return -1;
if (a_row > b_row)
return 1;
xassert(a_row == b_row);
if (a->col < b->col)
return -1;
if (a->col > b->col)
return 1;
xassert(a->col == b->col);
return 0;
}
void
grid_resize_and_reflow(
struct grid *grid, int new_rows, int new_cols,
int old_screen_rows, int new_screen_rows,
size_t tracking_points_count,
struct coord *const _tracking_points[static tracking_points_count])
{
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec start;
clock_gettime(CLOCK_MONOTONIC, &start);
#endif
struct row *const *old_grid = grid->rows;
const int old_rows = grid->num_rows;
const int old_cols = grid->num_cols;
/* Is viewpoint tracking current grid offset? */
const bool view_follows = grid->view == grid->offset;
int new_col_idx = 0;
int new_row_idx = 0;
struct row **new_grid = xcalloc(new_rows, sizeof(new_grid[0]));
struct row *new_row = new_grid[new_row_idx];
xassert(new_row == NULL);
new_row = grid_row_alloc(new_cols, false);
new_grid[new_row_idx] = new_row;
/* Start at the beginning of the old grid's scrollback. That is,
* at the output that is *oldest* */
int offset = grid->offset + old_screen_rows;
tll(struct sixel) untranslated_sixels = tll_init();
tll_foreach(grid->sixel_images, it)
tll_push_back(untranslated_sixels, it->item);
tll_free(grid->sixel_images);
/* Turn cursor coordinates into grid absolute coordinates */
struct coord cursor = grid->cursor.point;
cursor.row += grid->offset;
cursor.row &= old_rows - 1;
struct coord saved_cursor = grid->saved_cursor.point;
saved_cursor.row += grid->offset;
saved_cursor.row &= old_rows - 1;
size_t tp_count =
tracking_points_count +
1 + /* cursor */
1 + /* saved cursor */
!view_follows + /* viewport */
1; /* terminator */
struct coord *tracking_points[tp_count];
memcpy(tracking_points, _tracking_points, tracking_points_count * sizeof(_tracking_points[0]));
tracking_points[tracking_points_count] = &cursor;
tracking_points[tracking_points_count + 1] = &saved_cursor;
struct coord viewport = {0, grid->view};
if (!view_follows)
tracking_points[tracking_points_count + 2] = &viewport;
/* Not thread safe! */
tp_cmp_ctx.scrollback_start = offset;
tp_cmp_ctx.rows = old_rows;
qsort(
tracking_points, tp_count - 1, sizeof(tracking_points[0]), &tp_cmp);
/* NULL terminate */
struct coord terminator = {-1, -1};
tracking_points[tp_count - 1] = &terminator;
struct coord **next_tp = &tracking_points[0];
LOG_DBG("scrollback-start=%d", offset);
for (size_t i = 0; i < tp_count - 1; i++) {
LOG_DBG("TP #%zu: row=%d, col=%d",
i, tracking_points[i]->row, tracking_points[i]->col);
}
/*
* Walk the old grid
*/
for (int r = 0; r < old_rows; r++) {
const size_t old_row_idx = (offset + r) & (old_rows - 1);
/* Unallocated (empty) rows we can simply skip */
const struct row *old_row = old_grid[old_row_idx];
if (old_row == NULL)
continue;
/* Map sixels on current "old" row to current "new row" */
tll_foreach(untranslated_sixels, it) {
if (it->item.pos.row != old_row_idx)
continue;
struct sixel sixel = it->item;
sixel.pos.row = new_row_idx;
tll_push_back(grid->sixel_images, sixel);
tll_remove(untranslated_sixels, it);
}
#define line_wrap() \
new_row = _line_wrap( \
grid, new_grid, new_row, &new_row_idx, &new_col_idx, \
new_rows, new_cols)
/* Find last non-empty cell */
int col_count = 0;
for (int c = old_cols - 1; c >= 0; c--) {
const struct cell *cell = &old_row->cells[c];
if (!(cell->wc == 0 || cell->wc == CELL_SPACER)) {
col_count = c + 1;
break;
}
}
if (!old_row->linebreak && col_count > 0) {
/* Don't truncate logical lines */
while (col_count < old_cols && old_row->cells[col_count].wc == 0)
col_count++;
}
xassert(col_count >= 0 && col_count <= old_cols);
/* Do we have a (at least one) tracking point on this row */
struct coord *tp;
if (unlikely((*next_tp)->row == old_row_idx)) {
tp = *next_tp;
/* Find the *last* tracking point on this row */
struct coord *last_on_row = tp;
for (struct coord **iter = next_tp; (*iter)->row == old_row_idx; iter++)
last_on_row = *iter;
/* And make sure its end point is included in the col range */
xassert(last_on_row->row == old_row_idx);
col_count = max(col_count, last_on_row->col + 1);
} else
tp = NULL;
/* Does this row have any URIs? */
struct row_range *uri_range, *uri_range_terminator;
struct row_range *underline_range, *underline_range_terminator;
struct row_data *extra = old_row->extra;
if (extra != NULL && extra->uri_ranges.count > 0) {
uri_range = &extra->uri_ranges.v[0];
uri_range_terminator = &extra->uri_ranges.v[extra->uri_ranges.count];
/* Make sure the *last* URI range's end point is included
* in the copy */
const struct row_range *last_on_row =
&extra->uri_ranges.v[extra->uri_ranges.count - 1];
col_count = max(col_count, last_on_row->end + 1);
} else
uri_range = uri_range_terminator = NULL;
if (extra != NULL && extra->underline_ranges.count > 0) {
underline_range = &extra->underline_ranges.v[0];
underline_range_terminator = &extra->underline_ranges.v[extra->underline_ranges.count];
const struct row_range *last_on_row =
&extra->underline_ranges.v[extra->underline_ranges.count - 1];
col_count = max(col_count, last_on_row->end + 1);
} else
underline_range = underline_range_terminator = NULL;
for (int start = 0, left = col_count; left > 0;) {
int end;
bool tp_break = false;
bool uri_break = false;
bool underline_break = false;
bool ftcs_break = false;
/* Figure out where to end this chunk */
{
const int uri_col = uri_range != uri_range_terminator
? ((uri_range->start >= start ? uri_range->start : uri_range->end) + 1)
: INT_MAX;
const int underline_col = underline_range != underline_range_terminator
? ((underline_range->start >= start ? underline_range->start : underline_range->end) + 1)
: INT_MAX;
const int tp_col = tp != NULL ? tp->col + 1 : INT_MAX;
const int ftcs_col = old_row->shell_integration.cmd_start >= start
? old_row->shell_integration.cmd_start + 1
: old_row->shell_integration.cmd_end >= start
? old_row->shell_integration.cmd_end + 1
: INT_MAX;
end = min(col_count, min(min(tp_col, min(uri_col, underline_col)), ftcs_col));
uri_break = end == uri_col;
underline_break = end == underline_col;
tp_break = end == tp_col;
ftcs_break = end == ftcs_col;
}
int cols = end - start;
xassert(cols > 0);
xassert(start + cols <= old_cols);
/*
* Copy the row chunk to the new grid. Note that there may
* be fewer cells left on the new row than what we have in
* the chunk. I.e. the chunk may have to be split up into
* multiple memcpy:ies.
*/
for (int count = cols, from = start; count > 0;) {
xassert(new_col_idx <= new_cols);
int new_row_cells_left = new_cols - new_col_idx;
/* Row full, emit newline and get a new, fresh, row */
if (new_row_cells_left <= 0) {
line_wrap();
new_row_cells_left = new_cols;
}
/* Number of cells we can copy */
int amount = min(count, new_row_cells_left);
xassert(amount > 0);
/*
* If we're going to reach the end of the new row, we
* need to make sure we don't end in the middle of a
* multi-column character.
*/
int spacers = 0;
if (new_col_idx + amount >= new_cols) {
/*
* While the cell *after* the last cell is a CELL_SPACER
*
* This means we have a multi-column character
* that doesn't fit on the current row. We need to
* push it to the next row, and insert CELL_SPACER
* cells as padding.
*/
while (
unlikely(
amount > 0 &&
from + amount < old_cols &&
old_row->cells[from + amount].wc >= CELL_SPACER + 1))
{
amount--;
spacers++;
}
xassert(
amount <= 1 ||
old_row->cells[from + amount - 1].wc <= CELL_SPACER + 1);
}
xassert(new_col_idx + amount <= new_cols);
xassert(from + amount <= old_cols);
if (from == 0)
new_row->shell_integration.prompt_marker = old_row->shell_integration.prompt_marker;
memcpy(
&new_row->cells[new_col_idx], &old_row->cells[from],
amount * sizeof(struct cell));
count -= amount;
from += amount;
new_col_idx += amount;
xassert(new_col_idx <= new_cols);
if (unlikely(spacers > 0)) {
xassert(new_col_idx + spacers == new_cols);
for (int i = 0; i < spacers; i++, new_col_idx++) {
new_row->cells[new_col_idx].wc = CELL_SPACER;
new_row->cells[new_col_idx].attrs = (struct attributes){0};
}
}
}
xassert(new_col_idx > 0);
if (tp_break) {
do {
xassert(tp != NULL);
xassert(tp->row == old_row_idx);
xassert(tp->col == end - 1);
tp->row = new_row_idx;
tp->col = new_col_idx - 1;
next_tp++;
tp = *next_tp;
} while (tp->row == old_row_idx && tp->col == end - 1);
if (tp->row != old_row_idx)
tp = NULL;
LOG_DBG("next TP (tp=%p): %dx%d",
(void*)tp, (*next_tp)->row, (*next_tp)->col);
}
if (uri_break) {
xassert(uri_range != NULL);
if (uri_range->start == end - 1)
reflow_range_start(
uri_range, ROW_RANGE_URI, new_row, new_col_idx - 1);
if (uri_range->end == end - 1) {
reflow_range_end(
uri_range, ROW_RANGE_URI, new_row, new_col_idx - 1);
grid_row_uri_range_destroy(uri_range);
uri_range++;
}
}
if (underline_break) {
xassert(underline_range != NULL);
if (underline_range->start == end - 1)
reflow_range_start(
underline_range, ROW_RANGE_UNDERLINE, new_row, new_col_idx - 1);
if (underline_range->end == end - 1) {
reflow_range_end(
underline_range, ROW_RANGE_UNDERLINE, new_row, new_col_idx - 1);
grid_row_underline_range_destroy(underline_range);
underline_range++;
}
}
if (ftcs_break) {
xassert(old_row->shell_integration.cmd_start == start + cols - 1 ||
old_row->shell_integration.cmd_end == start + cols - 1);
if (old_row->shell_integration.cmd_start == start + cols - 1)
new_row->shell_integration.cmd_start = new_col_idx - 1;
if (old_row->shell_integration.cmd_end == start + cols - 1)
new_row->shell_integration.cmd_end = new_col_idx - 1;
}
left -= cols;
start += cols;
}
if (old_row->linebreak) {
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
new_row->linebreak = true;
if (r + 1 < old_rows)
line_wrap();
else if (new_row->extra != NULL) {
if (new_row->extra->uri_ranges.count > 0) {
/*
* line_wrap() "closes" still-open URIs. Since
* this is the *last* row, and since we're
* line-breaking due to a hard line-break (rather
* than running out of cells in the "new_row"),
* there shouldn't be an open URI (it would have
* been closed when we reached the end of the URI
* while reflowing the last "old" row).
*/
int last_idx = new_row->extra->uri_ranges.count - 1;
xassert(new_row->extra->uri_ranges.v[last_idx].end >= 0);
}
if (new_row->extra->underline_ranges.count > 0) {
int last_idx = new_row->extra->underline_ranges.count - 1;
xassert(new_row->extra->underline_ranges.v[last_idx].end >= 0);
}
}
}
grid_row_free(old_grid[old_row_idx]);
grid->rows[old_row_idx] = NULL;
#undef line_wrap
}
/* Erase the remaining cells */
memset(&new_row->cells[new_col_idx], 0,
(new_cols - new_col_idx) * sizeof(new_row->cells[0]));
for (struct coord **tp = next_tp; *tp != &terminator; tp++) {
LOG_DBG("TP: row=%d, col=%d (old cols: %d, new cols: %d)",
(*tp)->row, (*tp)->col, old_cols, new_cols);
}
xassert(old_rows == 0 || *next_tp == &terminator);
#if defined(_DEBUG)
/* Verify all URI ranges have been "closed" */
for (int r = 0; r < new_rows; r++) {
const struct row *row = new_grid[r];
if (row == NULL)
continue;
if (row->extra == NULL)
continue;
for (size_t i = 0; i < row->extra->uri_ranges.count; i++)
xassert(row->extra->uri_ranges.v[i].end >= 0);
for (size_t i = 0; i < row->extra->underline_ranges.count; i++)
xassert(row->extra->underline_ranges.v[i].end >= 0);
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
/* Verify all old rows have been free:d */
for (int i = 0; i < old_rows; i++)
xassert(grid->rows[i] == NULL);
#endif
/* Set offset such that the last reflowed row is at the bottom */
grid->offset = new_row_idx - new_screen_rows + 1;
while (grid->offset < 0)
grid->offset += new_rows;
while (new_grid[grid->offset] == NULL)
grid->offset = (grid->offset + 1) & (new_rows - 1);
/* Ensure all visible rows have been allocated */
for (int r = 0; r < new_screen_rows; r++) {
int idx = (grid->offset + r) & (new_rows - 1);
if (new_grid[idx] == NULL)
new_grid[idx] = grid_row_alloc(new_cols, true);
}
/* Free old grid (rows already free:d) */
free(grid->rows);
grid->rows = new_grid;
grid->num_rows = new_rows;
grid->num_cols = new_cols;
/*
* Set new viewport, making sure it's not too far down.
*
* This is done by using scrollback-start relative cooardinates,
* and bounding the new viewport to (grid_rows - screen_rows).
*/
int sb_view = grid_row_abs_to_sb(
grid, new_screen_rows, view_follows ? grid->offset : viewport.row);
grid->view = grid_row_sb_to_abs(
grid, new_screen_rows, min(sb_view, new_rows - new_screen_rows));
/* Convert absolute coordinates to screen relative */
cursor.row -= grid->offset;
while (cursor.row < 0)
cursor.row += grid->num_rows;
cursor.row = min(cursor.row, new_screen_rows - 1);
cursor.col = min(cursor.col, new_cols - 1);
saved_cursor.row -= grid->offset;
while (saved_cursor.row < 0)
saved_cursor.row += grid->num_rows;
saved_cursor.row = min(saved_cursor.row, new_screen_rows - 1);
saved_cursor.col = min(saved_cursor.col, new_cols - 1);
grid->cur_row = new_grid[(grid->offset + cursor.row) & (new_rows - 1)];
xassert(grid->cur_row != NULL);
grid->cursor.point = cursor;
grid->saved_cursor.point = saved_cursor;
grid->cursor.lcf = false;
grid->saved_cursor.lcf = false;
/* Free sixels we failed to "map" to the new grid */
tll_foreach(untranslated_sixels, it)
sixel_destroy(&it->item);
tll_free(untranslated_sixels);
#if defined(TIME_REFLOW) && TIME_REFLOW
struct timespec stop;
clock_gettime(CLOCK_MONOTONIC, &stop);
struct timespec diff;
timespec_sub(&stop, &start, &diff);
LOG_INFO("reflowed %d -> %d rows in %lds %ldns",
old_rows, new_rows,
(long)diff.tv_sec,
diff.tv_nsec);
#endif
}
static bool
ranges_match(const struct row_range *r1, const struct row_range *r2,
enum row_range_type type)
{
switch (type) {
case ROW_RANGE_URI:
/* TODO: also match URI? */
return r1->uri.id == r2->uri.id;
case ROW_RANGE_UNDERLINE:
return r1->underline.style == r2->underline.style &&
r1->underline.color_src == r2->underline.color_src &&
r1->underline.color == r2->underline.color;
}
BUG("invalid range type");
return false;
}
static bool
range_match_data(const struct row_range *r, const union row_range_data *data,
enum row_range_type type)
{
switch (type) {
case ROW_RANGE_URI:
return r->uri.id == data->uri.id;
case ROW_RANGE_UNDERLINE:
return r->underline.style == data->underline.style &&
r->underline.color_src == data->underline.color_src &&
r->underline.color == data->underline.color;
}
BUG("invalid range type");
return false;
}
static void
grid_row_range_put(struct row_ranges *ranges, int col,
const union row_range_data *data, enum row_range_type type)
{
size_t insert_idx = 0;
bool replace = false;
bool run_merge_pass = false;
for (int i = ranges->count - 1; i >= 0; i--) {
struct row_range *r = &ranges->v[i];
const bool matching = range_match_data(r, data, type);
if (matching && r->end + 1 == col) {
/* Extend existing range tail */
r->end++;
return;
}
else if (r->end < col) {
insert_idx = i + 1;
break;
}
else if (r->start > col)
continue;
else {
xassert(r->start <= col);
xassert(r->end >= col);
if (matching)
return;
if (r->start == r->end) {
replace = true;
run_merge_pass = true;
insert_idx = i;
} else if (r->start == col) {
run_merge_pass = true;
r->start++;
insert_idx = i;
} else if (r->end == col) {
run_merge_pass = true;
r->end--;
insert_idx = i + 1;
} else {
xassert(r->start < col);
xassert(r->end > col);
union row_range_data insert_data;
switch (type) {
case ROW_RANGE_URI: insert_data.uri = r->uri; break;
case ROW_RANGE_UNDERLINE: insert_data.underline = r->underline; break;
}
range_insert(ranges, i + 1, col + 1, r->end, type, &insert_data);
/* The insertion may xrealloc() the vector, making our
* 'old' pointer invalid */
r = &ranges->v[i];
r->end = col - 1;
xassert(r->start <= r->end);
insert_idx = i + 1;
}
break;
}
}
xassert(insert_idx <= ranges->count);
if (replace) {
grid_row_range_destroy(&ranges->v[insert_idx], type);
ranges->v[insert_idx] = (struct row_range){
.start = col,
.end = col,
};
switch (type) {
case ROW_RANGE_URI:
ranges->v[insert_idx].uri.id = data->uri.id;
ranges->v[insert_idx].uri.uri = xstrdup(data->uri.uri);
break;
case ROW_RANGE_UNDERLINE:
ranges->v[insert_idx].underline = data->underline;
break;
}
} else
range_insert(ranges, insert_idx, col, col, type, data);
if (run_merge_pass) {
for (size_t i = 1; i < ranges->count; i++) {
struct row_range *r1 = &ranges->v[i - 1];
struct row_range *r2 = &ranges->v[i];
if (ranges_match(r1, r2, type) && r1->end + 1 == r2->start) {
r1->end = r2->end;
range_delete(ranges, type, i);
i--;
}
}
}
}
void
grid_row_uri_range_put(struct row *row, int col, const char *uri, uint64_t id)
{
ensure_row_has_extra_data(row);
grid_row_range_put(
&row->extra->uri_ranges, col,
&(union row_range_data){.uri = {.id = id, .uri = (char *)uri}},
ROW_RANGE_URI);
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
void
grid_row_underline_range_put(struct row *row, int col, struct underline_range_data data)
{
ensure_row_has_extra_data(row);
grid_row_range_put(
&row->extra->underline_ranges, col,
&(union row_range_data){.underline = data},
ROW_RANGE_UNDERLINE);
verify_no_overlapping_ranges(row->extra);
verify_ranges_are_sorted(row->extra);
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
#define verify_range(idx, _start, _end, _id) \
do { \
xassert(idx < row_data.uri_ranges.count); \
xassert(row_data.uri_ranges.v[idx].start == _start); \
xassert(row_data.uri_ranges.v[idx].end == _end); \
xassert(row_data.uri_ranges.v[idx].uri.id == _id); \
} while (0)
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 1, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 2, "http://foo.bar", 123);
grid_row_uri_range_put(&row, 3, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* No-op */
grid_row_uri_range_put(&row, 0, "http://foo.bar", 123);
xassert(row_data.uri_ranges.count == 1);
verify_range(0, 0, 3, 123);
/* Replace head */
grid_row_uri_range_put(&row, 0, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 3, 123);
/* Replace tail */
grid_row_uri_range_put(&row, 3, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 2, 123);
verify_range(2, 3, 3, 789);
/* Replace tail + extend head */
grid_row_uri_range_put(&row, 2, "http://tail", 789);
xassert(row_data.uri_ranges.count == 3);
verify_range(1, 1, 1, 123);
verify_range(2, 2, 3, 789);
/* Replace + extend tail */
grid_row_uri_range_put(&row, 1, "http://head", 456);
xassert(row_data.uri_ranges.count == 2);
verify_range(0, 0, 1, 456);
verify_range(1, 2, 3, 789);
/* Replace + extend, then splice */
grid_row_uri_range_put(&row, 1, "http://tail", 789);
grid_row_uri_range_put(&row, 2, "http://splice", 000);
xassert(row_data.uri_ranges.count == 4);
verify_range(0, 0, 0, 456);
verify_range(1, 1, 1, 789);
verify_range(2, 2, 2, 000);
verify_range(3, 3, 3, 789);
for (size_t i = 0; i < row_data.uri_ranges.count; i++)
grid_row_uri_range_destroy(&row_data.uri_ranges.v[i]);
free(row_data.uri_ranges.v);
#undef verify_range
}
static void
grid_row_range_erase(struct row_ranges *ranges, enum row_range_type type,
int start, int end)
{
xassert(start <= end);
/* Split up, or remove, URI ranges affected by the erase */
for (int i = ranges->count - 1; i >= 0; i--) {
struct row_range *old = &ranges->v[i];
if (old->end < start)
return;
if (old->start > end)
continue;
if (start <= old->start && end >= old->end) {
/* Erase range covers URI completely - remove it */
range_delete(ranges, type, i);
}
else if (start > old->start && end < old->end) {
/*
* Erase range erases a part in the middle of the URI
*
* Must copy, since range_insert() may xrealloc() (thus
* causing 'old' to be invalid) before it dereferences
* old->data
*/
union row_range_data data = old->data;
range_insert(ranges, i + 1, end + 1, old->end, type, &data);
/* The insertion may xrealloc() the vector, making our
* 'old' pointer invalid */
old = &ranges->v[i];
old->end = start - 1;
return; /* There can be no more URIs affected by the erase range */
}
else if (start <= old->start && end >= old->start) {
/* Erase range erases the head of the URI */
xassert(start <= old->start);
old->start = end + 1;
}
else if (start <= old->end && end >= old->end) {
/* Erase range erases the tail of the URI */
xassert(end >= old->end);
old->end = start - 1;
return; /* There can be no more overlapping URIs */
}
}
}
void
grid_row_uri_range_erase(struct row *row, int start, int end)
{
xassert(row->extra != NULL);
grid_row_range_erase(&row->extra->uri_ranges, ROW_RANGE_URI, start, end);
}
void
grid_row_underline_range_erase(struct row *row, int start, int end)
{
xassert(row->extra != NULL);
grid_row_range_erase(&row->extra->underline_ranges, ROW_RANGE_UNDERLINE, start, end);
}
UNITTEST
{
struct row_data row_data = {.uri_ranges = {0}};
struct row row = {.extra = &row_data};
const union row_range_data data = {
.uri = {
.id = 0,
.uri = (char *)"dummy",
},
};
/* Try erasing a row without any URIs */
grid_row_uri_range_erase(&row, 0, 200);
xassert(row_data.uri_ranges.count == 0);
range_append(&row_data.uri_ranges, 1, 10, ROW_RANGE_URI, &data);
range_append(&row_data.uri_ranges, 11, 20, ROW_RANGE_URI, &data);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[1].start == 11);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
/* Erase both URis */
grid_row_uri_range_erase(&row, 1, 20);
xassert(row_data.uri_ranges.count == 0);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
/* Two URIs, then erase second half of the first, first half of
the second */
range_append(&row_data.uri_ranges, 1, 10, ROW_RANGE_URI, &data);
range_append(&row_data.uri_ranges, 11, 20, ROW_RANGE_URI, &data);
grid_row_uri_range_erase(&row, 5, 15);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 16);
xassert(row_data.uri_ranges.v[1].end == 20);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
grid_row_range_destroy(&row_data.uri_ranges.v[0], ROW_RANGE_URI);
grid_row_range_destroy(&row_data.uri_ranges.v[1], ROW_RANGE_URI);
row_data.uri_ranges.count = 0;
/* One URI, erase middle part of it */
range_append(&row_data.uri_ranges, 1, 10, ROW_RANGE_URI, &data);
grid_row_uri_range_erase(&row, 5, 6);
xassert(row_data.uri_ranges.count == 2);
xassert(row_data.uri_ranges.v[0].start == 1);
xassert(row_data.uri_ranges.v[0].end == 4);
xassert(row_data.uri_ranges.v[1].start == 7);
xassert(row_data.uri_ranges.v[1].end == 10);
verify_no_overlapping_ranges(&row_data);
verify_ranges_are_sorted(&row_data);
grid_row_range_destroy(&row_data.uri_ranges.v[0], ROW_RANGE_URI);
grid_row_range_destroy(&row_data.uri_ranges.v[1], ROW_RANGE_URI);
row_data.uri_ranges.count = 0;
/*
* Regression test: erasing the middle part of an URI causes us to
* insert a new URI (we split the partly erased URI into two).
*
* The insertion logic typically triggers an xrealloc(), which, in
* some cases, *moves* the entire URI vector to a new base
* address. grid_row_uri_range_erase() did not account for this,
* and tried to update the 'end' member in the URI range we just
* split. This causes foot to crash when the xrealloc() has moved
* the URI range vector.
*
* (note: we're only verifying we don't crash here, hence the lack
* of assertions).
*/
free(row_data.uri_ranges.v);
row_data.uri_ranges.v = NULL;
row_data.uri_ranges.size = 0;
range_append(&row_data.uri_ranges, 1, 10, ROW_RANGE_URI, &data);
xassert(row_data.uri_ranges.size == 1);
grid_row_uri_range_erase(&row, 5, 7);
xassert(row_data.uri_ranges.count == 2);
grid_row_ranges_destroy(&row_data.uri_ranges, ROW_RANGE_URI);
free(row_data.uri_ranges.v);
}