foot/sixel.c
Daniel Eklöf 62be729c45
scroll: destroy scrolled out sixels before scroll is applied
The logic that breaks out of sixel loops does not work for rows that
has already wrapped around.

Thus, we need to destroy sixels that are about to be scrolled
out *before* we actually scroll.

Since this is the *only* time we destroy sixels (instead of
overwriting it), rename the sixel functions. And, since they now do a
very specific thing, they can be greatly simplified (and thus faster).
2020-06-29 22:01:02 +02:00

868 lines
26 KiB
C

#include "sixel.h"
#include <string.h>
#include <limits.h>
#define LOG_MODULE "sixel"
#define LOG_ENABLE_DBG 0
#include "log.h"
#include "render.h"
#include "sixel-hls.h"
#include "util.h"
static size_t count;
void
sixel_fini(struct terminal *term)
{
free(term->sixel.palette);
}
static uint32_t
color_with_alpha(const struct terminal *term, uint32_t color)
{
uint16_t alpha = color == term->colors.bg ? term->colors.alpha : 0xffff;
return (alpha / 256u) << 24 | color;
}
void
sixel_init(struct terminal *term)
{
assert(term->sixel.image.data == NULL);
assert(term->sixel.palette_size <= SIXEL_MAX_COLORS);
term->sixel.state = SIXEL_DECSIXEL;
term->sixel.pos = (struct coord){0, 0};
term->sixel.color_idx = 0;
term->sixel.max_col = 0;
term->sixel.param = 0;
term->sixel.param_idx = 0;
memset(term->sixel.params, 0, sizeof(term->sixel.params));
term->sixel.image.data = malloc(1 * 6 * sizeof(term->sixel.image.data[0]));
term->sixel.image.width = 1;
term->sixel.image.height = 6;
term->sixel.image.autosize = true;
if (term->sixel.palette == NULL) {
term->sixel.palette = calloc(
term->sixel.palette_size, sizeof(term->sixel.palette[0]));
}
for (size_t i = 0; i < 1 * 6; i++)
term->sixel.image.data[i] = color_with_alpha(term, term->colors.bg);
count = 0;
/* TODO: default palette */
}
void
sixel_destroy(struct sixel *sixel)
{
pixman_image_unref(sixel->pix);
free(sixel->data);
sixel->pix = NULL;
sixel->data = NULL;
}
static void
sixel_erase(struct terminal *term, struct sixel *sixel)
{
for (int i = 0; i < sixel->rows; i++) {
int r = (sixel->pos.row + i) & (term->grid->num_rows - 1);
struct row *row = term->grid->rows[r];
if (row == NULL) {
/* A resize/reflow may cause row to now be unallocated */
continue;
}
row->dirty = true;
for (int c = 0; c < term->grid->num_cols; c++)
row->cells[c].attrs.clean = 0;
}
sixel_destroy(sixel);
}
static int
rebase_row(const struct terminal *term, int abs_row)
{
int scrollback_start = term->grid->offset + term->rows;
int rebased_row = abs_row - scrollback_start + term->grid->num_rows;
rebased_row &= term->grid->num_rows - 1;
return rebased_row;
}
static bool
verify_sixel_list_order(const struct terminal *term)
{
#if defined(_DEBUG)
int prev_row = INT_MAX;
tll_foreach(term->grid->sixel_images, it) {
int row = rebase_row(term, it->item.pos.row + it->item.rows - 1);
assert(row < prev_row);
if (row >= prev_row)
return false;
prev_row = row;
}
#endif
return true;
}
static void
sixel_insert(struct terminal *term, struct sixel sixel)
{
int end_row = rebase_row(term, sixel.pos.row + sixel.rows - 1);
tll_foreach(term->grid->sixel_images, it) {
if (rebase_row(term, it->item.pos.row + it->item.rows - 1) < end_row) {
tll_insert_before(term->grid->sixel_images, it, sixel);
goto out;
}
}
tll_push_back(term->grid->sixel_images, sixel);
out:
#if defined(LOG_ENABLE_DBG) && LOG_ENABLE_DBG
LOG_DBG("sixel list after insertion:");
tll_foreach(term->grid->sixel_images, it) {
LOG_DBG(" rows=%d+%d", it->item.pos.row, it->item.rows);
}
#else
verify_sixel_list_order(term);
#endif
}
void
sixel_scroll_up(struct terminal *term, int rows)
{
tll_rforeach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
int six_start = rebase_row(term, six->pos.row);
if (six_start < rows) {
sixel_destroy(six);
tll_remove(term->grid->sixel_images, it);
} else
break;
}
verify_sixel_list_order(term);
}
void
sixel_scroll_down(struct terminal *term, int rows)
{
assert(term->grid->num_rows >= rows);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
int six_end = rebase_row(term, six->pos.row + six->rows - 1);
if (six_end >= term->grid->num_rows - rows) {
sixel_destroy(six);
tll_remove(term->grid->sixel_images, it);
} else
break;
}
verify_sixel_list_order(term);
}
static void
sixel_overwrite(struct terminal *term, struct sixel *six,
int row, int col, int height, int width)
{
assert(row >= 0);
assert(row + height <= term->grid->num_rows);
assert(col >= 0);
assert(col + width <= term->grid->num_cols);
int rel_above = min(max(row - six->pos.row, 0), six->rows);
int rel_below = max(min(row + height - six->pos.row, six->rows), 0);
int rel_left = min(max(col - six->pos.col, 0), six->cols);
int rel_right = max(min(col + width - six->pos.col, six->cols), 0);
assert(rel_above >= 0);
assert(rel_below >= 0);
assert(rel_left >= 0);
assert(rel_right >= 0);
LOG_DBG("SPLIT: six (%p): %dx%d-%dx%d, %dx%d-%dx%d, rel: above=%d, below=%d, left=%d, right=%d",
six, six->pos.row, six->pos.col, six->rows, six->cols,
row, col, height, width,
rel_above, rel_below, rel_left, rel_right);
struct sixel imgs[4] = {};
if (rel_above > 0) {
imgs[0] = (struct sixel){
.width = six->width,
.height = rel_above * term->cell_height,
.rows = rel_above,
.cols = six->cols,
.pos = six->pos,
};
imgs[0].data = malloc(imgs[0].width * imgs[0].height * sizeof(uint32_t));
memcpy(imgs[0].data, six->data, imgs[0].width * imgs[0].height * sizeof(uint32_t));
}
if (rel_below < six->rows) {
imgs[1] = (struct sixel){
.width = six->width,
.height = six->height - rel_below * term->cell_height,
.rows = six->rows - rel_below,
.cols = six->cols,
.pos = (struct coord){
six->pos.col,
(six->pos.row + rel_below) & (term->grid->num_rows - 1)},
};
imgs[1].data = malloc(imgs[1].width * imgs[1].height * sizeof(uint32_t));
memcpy(
imgs[1].data,
&((const uint32_t *)six->data)[rel_below * term->cell_height * six->width],
imgs[1].width * imgs[1].height * sizeof(uint32_t));
}
if (rel_left > 0) {
imgs[2] = (struct sixel){
.width = rel_left * term->cell_width,
.height = min(term->cell_height, six->height - rel_above * term->cell_height),
.rows = 1,
.cols = rel_left,
.pos = (struct coord){
six->pos.col,
(six->pos.row + rel_above) & (term->grid->num_rows - 1)},
};
imgs[2].data = malloc(imgs[2].width * imgs[2].height * sizeof(uint32_t));
for (size_t i = 0; i < term->cell_height; i++)
memcpy(
&((uint32_t *)imgs[2].data)[i * imgs[2].width],
&((const uint32_t *)six->data)[(rel_above * term->cell_height + i) * six->width],
imgs[2].width * sizeof(uint32_t));
}
if (rel_right < six->cols) {
imgs[3] = (struct sixel){
.width = six->width - rel_right * term->cell_width,
.height = min(term->cell_height, six->height - rel_above * term->cell_height),
.rows = 1,
.cols = six->cols - rel_right,
.pos = (struct coord){
six->pos.col + rel_right,
(six->pos.row + rel_above) & (term->grid->num_rows - 1)},
};
imgs[3].data = malloc(imgs[3].width * imgs[3].height * sizeof(uint32_t));
for (size_t i = 0; i < term->cell_height; i++)
memcpy(
&((uint32_t *)imgs[3].data)[i * imgs[3].width],
&((const uint32_t *)six->data)[(rel_above * term->cell_height + i) * six->width + rel_right * term->cell_width],
imgs[3].width * sizeof(uint32_t));
}
for (size_t i = 0; i < sizeof(imgs) / sizeof(imgs[0]); i++) {
if (imgs[i].data == NULL)
continue;
imgs[i].pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
imgs[i].width, imgs[i].height,
imgs[i].data, imgs[i].width * sizeof(uint32_t));
sixel_insert(term, imgs[i]);
}
}
/* Row numbers are absolute */
static void
_sixel_overwrite_by_rectangle(
struct terminal *term, int row, int col, int height, int width)
{
assert(row >= 0);
assert(row + height <= term->grid->num_rows);
assert(col >= 0);
assert(col + width <= term->grid->num_cols);
const int start = row;
const int end = row + height - 1;
const int scrollback_rel_start = rebase_row(term, start);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
const int six_scrollback_rel_end = rebase_row(term, six_end);
if (six_scrollback_rel_end < scrollback_rel_start) {
/* All remaining sixels are *before* our rectangle */
break;
}
/* We should never generate scrollback wrapping sixels */
assert(six_end >= six_start);
if ((start <= six_start && end >= six_start) || /* Crosses sixel start boundary */
(start <= six_end && end >= six_end) || /* Crosses sixel end boundary */
(start >= six_start && end <= six_end)) /* Fully within sixel range */
{
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols - 1;
if ((col <= col_start && col + width - 1 >= col_start) ||
(col <= col_end && col + width - 1 >= col_end) ||
(col >= col_start && col + width - 1 <= col_end))
{
sixel_overwrite(term, six, start, col, height, width);
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
}
void
sixel_overwrite_by_rectangle(
struct terminal *term, int row, int col, int height, int width)
{
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
const int start = (term->grid->offset + row) & (term->grid->num_rows - 1);
const int end = (start + height - 1) & (term->grid->num_rows - 1);
const bool wraps = end < start;
if (wraps) {
int rows_to_wrap_around = term->grid->num_rows - start;
assert(height - rows_to_wrap_around > 0);
_sixel_overwrite_by_rectangle(term, start, col, rows_to_wrap_around, width);
_sixel_overwrite_by_rectangle(term, 0, col, height - rows_to_wrap_around, width);
} else
_sixel_overwrite_by_rectangle(term, start, col, height, width);
}
/* Row numbers are relative to grid offset */
void
sixel_overwrite_by_row(struct terminal *term, int _row, int col, int width)
{
assert(col >= 0);
assert(_row >= 0);
assert(_row < term->rows);
assert(col >= 0);
assert(col + width <= term->grid->num_cols);
if (likely(tll_length(term->grid->sixel_images) == 0))
return;
const int row = (term->grid->offset + _row) & (term->grid->num_rows - 1);
const int scrollback_rel_row = rebase_row(term, row);
tll_foreach(term->grid->sixel_images, it) {
struct sixel *six = &it->item;
const int six_start = six->pos.row;
const int six_end = (six_start + six->rows - 1) & (term->grid->num_rows - 1);
/* We should never generate scrollback wrapping sixels */
assert(six_end >= six_start);
const int six_scrollback_rel_end = rebase_row(term, six_end);
if (six_scrollback_rel_end < scrollback_rel_row) {
/* All remaining sixels are *before* "our" row */
break;
}
if (row >= six_start && row <= six_end) {
const int col_start = six->pos.col;
const int col_end = six->pos.col + six->cols - 1;
if ((col <= col_start && col + width - 1 >= col_start) ||
(col <= col_end && col + width - 1 >= col_end) ||
(col >= col_start && col + width - 1 <= col_end))
{
sixel_overwrite(term, six, row, col, 1, width);
sixel_erase(term, six);
tll_remove(term->grid->sixel_images, it);
}
}
}
}
void
sixel_overwrite_at_cursor(struct terminal *term, int width)
{
sixel_overwrite_by_row(
term, term->grid->cursor.point.row, term->grid->cursor.point.col, width);
}
void
sixel_unhook(struct terminal *term)
{
int pixel_row_idx = 0;
int pixel_rows_left = term->sixel.image.height;
const int stride = term->sixel.image.width * sizeof(uint32_t);
/* We do not allow sixels to cross the scrollback wrap-around, as
* this makes intersection calculations much more complicated */
while (pixel_rows_left > 0) {
const struct coord *cursor = &term->grid->cursor.point;
const int cur_row = (term->grid->offset + cursor->row) & (term->grid->num_rows - 1);
const int rows_avail = term->grid->num_rows - cur_row;
const int pixel_rows_avail = rows_avail * term->cell_height;
const int width = term->sixel.image.width;
const int height = min(pixel_rows_left, pixel_rows_avail);
uint32_t *img_data;
if (pixel_row_idx == 0)
img_data = term->sixel.image.data;
else {
img_data = malloc(height * stride);
memcpy(
img_data,
&((uint8_t *)term->sixel.image.data)[pixel_row_idx * stride],
height * stride);
}
struct sixel image = {
.data = img_data,
.width = width,
.height = height,
.rows = (height + term->cell_height - 1) / term->cell_height,
.cols = (width + term->cell_width - 1) / term->cell_width,
.pos = (struct coord){cursor->col, cur_row},
};
sixel_overwrite_by_rectangle(
term, cursor->row, image.pos.col, image.rows, image.cols);
LOG_DBG("generating %dx%d pixman image at %d-%d", image.width, image.height, image.pos.row, image.pos.row + image.rows);
image.pix = pixman_image_create_bits_no_clear(
PIXMAN_a8r8g8b8,
image.width, image.height,
img_data, stride);
for (size_t i = 0; i < image.rows; i++)
term_linefeed(term);
term_formfeed(term);
render_refresh(term);
sixel_insert(term, image);
pixel_row_idx += height;
pixel_rows_left -= height;
}
term->sixel.image.data = NULL;
term->sixel.image.width = 0;
term->sixel.image.height = 0;
term->sixel.max_col = 0;
term->sixel.pos = (struct coord){0, 0};
}
static unsigned
max_width(const struct terminal *term)
{
/* foot extension - treat 0 to mean current terminal size */
return term->sixel.max_width == 0
? term->cols * term->cell_width
: term->sixel.max_width;
}
static unsigned
max_height(const struct terminal *term)
{
/* foot extension - treat 0 to mean current terminal size */
return term->sixel.max_height == 0
? term->rows * term->cell_height
: term->sixel.max_height;
}
static bool
resize(struct terminal *term, int new_width, int new_height)
{
if (!term->sixel.image.autosize)
return false;
LOG_DBG("resizing image: %dx%d -> %dx%d",
term->sixel.image.width, term->sixel.image.height,
new_width, new_height);
uint32_t *old_data = term->sixel.image.data;
const int old_width = term->sixel.image.width;
const int old_height = term->sixel.image.height;
int alloc_new_width = new_width;
int alloc_new_height = (new_height + 6 - 1) / 6 * 6;
assert(alloc_new_height >= new_height);
assert(alloc_new_height - new_height < 6);
assert(new_width >= old_width);
assert(new_height >= old_height);
uint32_t *new_data = NULL;
if (new_width == old_width) {
/* Width (and thus stride) is the same, so we can simply
* re-alloc the existing buffer */
new_data = realloc(old_data, alloc_new_width * alloc_new_height * sizeof(uint32_t));
if (new_data == NULL) {
LOG_ERRNO("failed to reallocate sixel image buffer");
return false;
}
assert(new_height > old_height);
} else {
/* Width (and thus stride) change - need to allocate a new buffer */
assert(new_width > old_width);
new_data = malloc(alloc_new_width * alloc_new_height * sizeof(uint32_t));
/* Copy old rows, and initialize new columns to background color */
for (int r = 0; r < old_height; r++) {
memcpy(&new_data[r * new_width], &old_data[r * old_width], old_width * sizeof(uint32_t));
for (int c = old_width; c < new_width; c++)
new_data[r * new_width + c] = color_with_alpha(term, term->colors.bg);
}
free(old_data);
}
/* Initialize new rows to background color */
for (int r = old_height; r < new_height; r++) {
for (int c = 0; c < new_width; c++)
new_data[r * new_width + c] = color_with_alpha(term, term->colors.bg);
}
assert(new_data != NULL);
term->sixel.image.data = new_data;
term->sixel.image.width = new_width;
term->sixel.image.height = new_height;
return true;
}
static void
sixel_add(struct terminal *term, uint32_t color, uint8_t sixel)
{
//LOG_DBG("adding sixel %02hhx using color 0x%06x", sixel, color);
if (term->sixel.pos.col >= max_width(term) ||
term->sixel.pos.row * 6 + 5 >= max_height(term))
{
return;
}
if (term->sixel.pos.col >= term->sixel.image.width ||
term->sixel.pos.row * 6 + 5 >= (term->sixel.image.height + 6 - 1) / 6 * 6)
{
int width = max(
term->sixel.image.width,
max(term->sixel.max_col, term->sixel.pos.col + 1));
int height = max(
term->sixel.image.height,
(term->sixel.pos.row + 1) * 6);
if (!resize(term, width, height))
return;
}
for (int i = 0; i < 6; i++, sixel >>= 1) {
if (sixel & 1) {
size_t pixel_row = term->sixel.pos.row * 6 + i;
size_t stride = term->sixel.image.width;
size_t idx = pixel_row * stride + term->sixel.pos.col;
term->sixel.image.data[idx] = color_with_alpha(term, color);
}
}
assert(sixel == 0);
term->sixel.pos.col++;
}
static void
decsixel(struct terminal *term, uint8_t c)
{
switch (c) {
case '"':
term->sixel.state = SIXEL_DECGRA;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '!':
term->sixel.state = SIXEL_DECGRI;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '#':
term->sixel.state = SIXEL_DECGCI;
term->sixel.color_idx = 0;
term->sixel.param = 0;
term->sixel.param_idx = 0;
break;
case '$':
if (term->sixel.pos.col > term->sixel.max_col)
term->sixel.max_col = term->sixel.pos.col;
term->sixel.pos.col = 0;
break;
case '-':
if (term->sixel.pos.col > term->sixel.max_col)
term->sixel.max_col = term->sixel.pos.col;
term->sixel.pos.row++;
term->sixel.pos.col = 0;
break;
case '?'...'~':
sixel_add(term, term->sixel.palette[term->sixel.color_idx], c - 63);
break;
case ' ':
case '\n':
case '\r':
break;
default:
LOG_WARN("invalid sixel character: '%c' at idx=%zu", c, count);
break;
}
}
static void
decgra(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
unsigned pan = nparams > 0 ? term->sixel.params[0] : 0;
unsigned pad = nparams > 1 ? term->sixel.params[1] : 0;
unsigned ph = nparams > 2 ? term->sixel.params[2] : 0;
unsigned pv = nparams > 3 ? term->sixel.params[3] : 0;
pan = pan > 0 ? pan : 1;
pad = pad > 0 ? pad : 1;
LOG_DBG("pan=%u, pad=%u (aspect ratio = %u), size=%ux%u",
pan, pad, pan / pad, ph, pv);
if (ph >= term->sixel.image.height && pv >= term->sixel.image.width &&
ph <= max_height(term) && pv <= max_width(term))
{
if (resize(term, ph, pv))
term->sixel.image.autosize = false;
}
term->sixel.state = SIXEL_DECSIXEL;
sixel_put(term, c);
break;
}
}
}
static void
decgri(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
default:
//LOG_DBG("repeating '%c' %u times", c, term->sixel.param);
for (unsigned i = 0; i < term->sixel.param; i++)
decsixel(term, c);
term->sixel.state = SIXEL_DECSIXEL;
break;
}
}
static void
decgci(struct terminal *term, uint8_t c)
{
switch (c) {
case '0'...'9':
term->sixel.param *= 10;
term->sixel.param += c - '0';
break;
case ';':
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
term->sixel.param = 0;
break;
default: {
if (term->sixel.param_idx < ALEN(term->sixel.params))
term->sixel.params[term->sixel.param_idx++] = term->sixel.param;
int nparams = term->sixel.param_idx;
if (nparams > 0)
term->sixel.color_idx = min(term->sixel.params[0], term->sixel.palette_size - 1);
if (nparams > 4) {
unsigned format = term->sixel.params[1];
unsigned c1 = term->sixel.params[2];
unsigned c2 = term->sixel.params[3];
unsigned c3 = term->sixel.params[4];
switch (format) {
case 1: { /* HLS */
uint32_t rgb = hls_to_rgb(c1, c2, c3);
LOG_DBG("setting palette #%d = HLS %hhu/%hhu/%hhu (0x%06x)",
term->sixel.color_idx, c1, c2, c3, rgb);
term->sixel.palette[term->sixel.color_idx] = rgb;
break;
}
case 2: { /* RGB */
uint8_t r = 255 * c1 / 100;
uint8_t g = 255 * c2 / 100;
uint8_t b = 255 * c3 / 100;
LOG_DBG("setting palette #%d = RGB %hhu/%hhu/%hhu",
term->sixel.color_idx, r, g, b);
term->sixel.palette[term->sixel.color_idx] = r << 16 | g << 8 | b;
break;
}
}
}
term->sixel.state = SIXEL_DECSIXEL;
sixel_put(term, c);
break;
}
}
}
void
sixel_put(struct terminal *term, uint8_t c)
{
switch (term->sixel.state) {
case SIXEL_DECSIXEL: decsixel(term, c); break;
case SIXEL_DECGRA: decgra(term, c); break;
case SIXEL_DECGRI: decgri(term, c); break;
case SIXEL_DECGCI: decgci(term, c); break;
}
count++;
}
void
sixel_colors_report_current(struct terminal *term)
{
char reply[24];
snprintf(reply, sizeof(reply), "\033[?1;0;%uS", term->sixel.palette_size);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for current color count: %u", term->sixel.palette_size);
}
void
sixel_colors_reset(struct terminal *term)
{
LOG_DBG("sixel palette size reset to %u", SIXEL_MAX_COLORS);
free(term->sixel.palette);
term->sixel.palette = NULL;
term->sixel.palette_size = SIXEL_MAX_COLORS;
sixel_colors_report_current(term);
}
void
sixel_colors_set(struct terminal *term, unsigned count)
{
unsigned new_palette_size = min(max(2, count), SIXEL_MAX_COLORS);
LOG_DBG("sixel palette size set to %u", new_palette_size);
free(term->sixel.palette);
term->sixel.palette = NULL;
term->sixel.palette_size = new_palette_size;
sixel_colors_report_current(term);
}
void
sixel_colors_report_max(struct terminal *term)
{
char reply[24];
snprintf(reply, sizeof(reply), "\033[?1;0;%uS", SIXEL_MAX_COLORS);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for max color count: %u", SIXEL_MAX_COLORS);
}
void
sixel_geometry_report_current(struct terminal *term)
{
char reply[64];
snprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS",
max_width(term), max_height(term));
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for current sixel geometry: %ux%u",
max_width(term), max_height(term));
}
void
sixel_geometry_reset(struct terminal *term)
{
LOG_DBG("sixel geometry reset to %ux%u", max_width(term), max_height(term));
term->sixel.max_width = 0;
term->sixel.max_height = 0;
sixel_geometry_report_current(term);
}
void
sixel_geometry_set(struct terminal *term, unsigned width, unsigned height)
{
LOG_DBG("sixel geometry set to %ux%u", width, height);
term->sixel.max_width = width;
term->sixel.max_height = height;
sixel_geometry_report_current(term);
}
void
sixel_geometry_report_max(struct terminal *term)
{
unsigned max_width = term->cols * term->cell_width;
unsigned max_height = term->rows * term->cell_height;
char reply[64];
snprintf(reply, sizeof(reply), "\033[?2;0;%u;%uS", max_width, max_height);
term_to_slave(term, reply, strlen(reply));
LOG_DBG("query response for max sixel geometry: %ux%u",
max_width, max_height);
}