#!/usr/bin/env python3 import argparse import math import sys # Note: we use a pure gamma 2.2 function, rather than the piece-wise # sRGB transfer function, since that is what all compositors do. def srgb_to_linear(f: float) -> float: assert(f >= 0 and f <= 1.0) return math.pow(f, 2.2) def linear_to_srgb(f: float) -> float: return math.pow(f, 1 / 2.2) def main(): parser = argparse.ArgumentParser() parser.add_argument('c_output', type=argparse.FileType('w')) parser.add_argument('h_output', type=argparse.FileType('w')) opts = parser.parse_args() linear_table: list[int] = [] for i in range(256): linear_table.append(int(srgb_to_linear(float(i) / 255) * 65535 + 0.5)) opts.h_output.write("#pragma once\n") opts.h_output.write("#include \n") opts.h_output.write("\n") opts.h_output.write('/* 8-bit input, 16-bit output */\n') opts.h_output.write("extern const uint16_t srgb_decode_8_to_16_table[256];") opts.h_output.write('\n') opts.h_output.write('static inline uint16_t\n') opts.h_output.write('srgb_decode_8_to_16(uint8_t v)\n') opts.h_output.write('{\n') opts.h_output.write(' return srgb_decode_8_to_16_table[v];\n') opts.h_output.write('}\n') opts.h_output.write('\n') opts.h_output.write('/* 8-bit input, 8-bit output */\n') opts.h_output.write("extern const uint8_t srgb_decode_8_to_8_table[256];\n") opts.h_output.write('\n') opts.h_output.write('static inline uint8_t\n') opts.h_output.write('srgb_decode_8_to_8(uint8_t v)\n') opts.h_output.write('{\n') opts.h_output.write(' return srgb_decode_8_to_8_table[v];\n') opts.h_output.write('}\n') opts.c_output.write('#include "srgb.h"\n') opts.c_output.write('\n') opts.c_output.write("const uint16_t srgb_decode_8_to_16_table[256] = {\n") for i in range(256): opts.c_output.write(f' {linear_table[i]},\n') opts.c_output.write('};\n') opts.c_output.write("const uint8_t srgb_decode_8_to_8_table[256] = {\n") for i in range(256): opts.c_output.write(f' {linear_table[i] >> 8},\n') opts.c_output.write('};\n') if __name__ == '__main__': sys.exit(main())