When enabled, foot will ‘damage’ the entire window, instead of just
the modified/updated rows.
This will force the compositor to redraw/blend the whole window.
This can be used to workaround an issue with fractional scaling in
Gnome, where random thin lines may appear.
Try to detect double-width *glyphs* for single-width *characters*, and
allow them to overflow into the next cell.
This is only done for single-width chars with a glyph width that is at
least 1.5 cells wide, but at most 3 cells.
The feature is gated by the new
‘tweak.allow-overflowing-double-width-glyphs’, and is disabled by
default.
Closes#116
This simplifies the handling of mouse and keyboard bindings.
Before, the bindings where parsed *both* when loading the
configuration, and then on every keyboard enter event. This was done
since keys require a keymap to be decoded. Something we don't have at
configuration time. The idea was that at config time, we used a
default keymap just to verify the key combo strings were valid.
The following has changed:
* The bindings in the config struct is now *one* key combo per
entry. Previously, it was one *action* per entry, and each entry
had one or more key combos.
Doing it this way makes it easier when converting the binding in the
keyboard enter event (which previously had to expand the combos
anyway).
* The bindings in the config struct no longer contains any unparsed
strings.
A key binding contains a decoded 'modifier' struct (which specifies
whether e.g. ctrl, or shift, or ctrl+shift must be pressed for the
binding to be used).
It also contains a decoded XKB keysym.
* A mouse binding in the config struct is similar to a key binding,
except it contains the button, and click count instead of the XKB
key sym.
* The modifiers in the user-specified key combo is decoded at config
time, by using the pre-defined XKB constants
XKB_MOD_NAME_<modifier>.
The result is stored in a 'modifiers' struct, which is just a
collection of booleans; one for each supported modifier.
The supported modifiers are: shift, ctrl, alt and meta/super.
* The key sym is decoded at config time using
xkb_keysym_from_name(). This call does *not* depend on a keymap.
* The mouse button is decoded at config time using a hardcoded mapping
table (just like before).
* The click count is currently hard-coded to 1.
* In the keyboard enter event, all we need to do is pre-compute the
xkb_mod_mask_t variable for each key/mouse binding, and find all the
*key codes* that map to the (already decoded) symbol.
For mouse bindings, the modifiers are the *only* reason we convert
the mouse bindings at all.
In fact, on button events, we check if the seat has a keyboard. If
not, we use the mouse bindings from the configuration directly, and
simply filter out those with a non-empty set of modifiers.
This can be set to 'none' (the default), 'osd', 'log' or 'both'.
When 'osd' is enabled, we'll render the frame rendering time to a
sub-surface after each frame.
When 'log' is enabled, the frame rendering time is logged on stderr.
The default is still to inverse the regular foreground/background
colors.
If the user sets *both* of the new options, selection-foreground and
selection-background, those colors will *always* be used for selected
cells, instead of inverting the regular foreground/background colors.
When enabled, the mouse cursor is hidden when the user types in the
terminal. It is un-hidden when the user moves the mouse, or when the
window loses keyboard focus.
* Rename user_warning to user_notification
* Add warning and error types (in addition to the existing deprecated)
* Simplify logic when emitting a user notification after forking; we
don't need to copy the notification data since we're in a new
process and have total control over that memory.
This allows us to detect syntax errors early on, and is also more
efficient since we don't have to re-tokenize the command line every
time the binding is executed.
And turn it from a boolean to an enum. It can be set to:
* `none` - disables the indicator
* `static` - always rendered near the top of the window
* `moving` - position reflects the scrollback position
A key binding may now have an optional ':<cmd>' string appended to the
key.
This is intended to be used like so:
pipe-scrollback:sh -c "cat > file"=Print
TODO: we still only allow one *action*. Meaning you still cannot
specify multiple pipe-scrollback bindings, for example.
When resizing the font on-the-fly, we now do a complete
font-reload (this is basically what fcft_size_adjust() did anyway).
To get the correct size, we maintain the current size ourselves.
We get the initial size from the user-provided font pattern, by
converting the string to an FcPattern, and using FcPatternGet() to
retrieve both the FC_SIZE and FC_PIXEL_SIZE attributes. These
attributes are then removed from the pattern, and the pattern is
converted back to a string.
The terminal struct maintains a copy of the font sizes. These are
initially set to the sizes from the config.
When the user resizes the font, the terminal-local sizes are
adjusted. To ensure the primary and user-configured fallback fonts are
resizes equally much, convert any pixel sizes to point sizes at this
point.
When the font size is reset, we reload the font sizes from the
config (thus once again returning actual pixel-sizes, if that's what
the user has configured).
They aren't really user configurable. At least not yet.
However, with this, we now handle raw key codes just like the normal
key bindings. Meaning, e.g. ctrl+g, ctrl+a, ctrl+e etc now works while
searching with e.g. a russian layout.
This adds an undocumented 'tweak' section to footrc, with two new
options:
* delayed-render-lower
* delayed-render-upper
Both takes an integer value, representing the lower/upper timeout
values (in nano seconds) for delayed rendering.
* New config section, "mouse-bindings", where bindings are defined on
the form "action=BTN_<name>
* pointer_button() handler now scans the bindings list instead of
hardcoding primary-paste to BTN_MIDDLE.
* The implementation handles single- double- and triple clicks in the
bindings, but there is currently no way to define anything but a
single-click binding in the configuration.
This adds initial support for defining key and mouse bindings that are
applied in different terminal modes/states.
For example, there are two arrays dealing with key and mouse bindings
in the "normal" mode. Most bindings will go here.
There's also an array for "search" mode. These bindings will be used
when the user has started a scrollback search.
In the future, there may be a model selection mode as well. Or maybe
"search" and "modal selection" will be combined into a single
"keyboard" mode. We'll see.
Since the keyboard bindings depend on the current XKB keymap,
translation from the user specified key combination string cannot be
done when loading the configuration, but must be done when we've
received a keymap from the wayland server.
We should explore if it's possible to load some kind of default keymap
just to be able to verify the validity of the key combination strings
at configuration load time, to be able to reject the configuration at
startup.
A couple of key bindings have been added as proof of concept.
Mouse bindings aren't handled at all yet, and is likely to be
re-written. For example, we can probably translate the configuration
strings at configuration load time.
The user can now configure the following:
* Whether to prefer CSDs or SSDs. But note that this is only a hint to
the compositor - it may deny our request. Furthermore, not all
compositors implement the decoration manager protocol, meaning CSDs
will be used regardless of the user configuration (GNOME/mutter
being the most prominent one).
* Title bar size and color, including transparency
* Border size and color, including transparency
Also drop support for rendering the CSDs inside the main surface.
This adds a flag, -p,--presentation-timings, that enables input lag
measuring using the presentation time Wayland protocol.
When enabled, we store a timestamp when we *send* a key to the
slave. Then, when we commit a frame for rendering to the compositor,
we request presentation feedback. We also store a timestamp for when
the frame was committed.
The 'presented' callback then looks at the input and commit
timestamps, and compares it with the presented timestamp.
The delay is logged at INFO when the delay was less than one frame
interval, at WARN when it was one frame interval, and at ERR when it
was two or more frame intervals.
We also update statistic counters that we log when foot is shut down.
A top-level font now has a list of fallback fonts. When a glyph cannot
be found, we try each fallback font in turn, until we either find one
that has the glyph, or until we've exhausted the list.
To make this actually work in practise (read: to make performance
acceptable), the cache is re-worked and is now populated on demand.
It also supports non-ASCII characters, by using the 4-byte unicode
character as index instead.
Since having an array that can be indexed by a 4-byte value isn't
really viable, we now have a simple hash table instead of an array.