As that breaks e.g. selection marking (SPACER cells didn't get
inverted when rendered).
Instead, skip them in extract_one() only. I.e. when copying text from
the grid.
When printing a multi-column character, write CELL_MULT_COL_SPACER
instead of '0' to both padding cells (when character doesn't fit at
the end of the line), and to the cells following the actual character.
When printing a multi-column character at the end of the line, and it
doesn't fit, we currently insert a forced line-wrap. This means the
last character(s) on the previous line will be empty, followed by a
multi-column character in the first cell on the next line.
Without special code to handle this, the selection text extraction
code will insert a hard newline, since this is normally the correct
thing to do.
Add a TODO, to consider writing a special place holder value to these
padding cells.
* xcursor always set for all pointers
* xcursor sometimes not updated when it should be
* mouse grabbed state wasn't per seat, but global (i.e. "does at least
one seat enable mouse grabbing")
* selection enabled state wasn't per seat
When scrolling, there are a couple of cases where an existing
selection must be canceled because we cannot meaningfully represent it
after scrolling.
These are when the selection is (partly) inside:
* The top scrolling region
* The bottom scrolling region
* The new lines scrolled in. I.e. re-used lines
For the scrolling regions, the real problem is when the selection
crosses the scrolling region boundary; a selection that is completely
inside a scrolling regions _might_ be possible to keep, but we would
need to translate the selection coordinates to the new scrolling
region lines.
For simplicity, we cancel the selection if it touches the scrolling
region. Period.
The last item, newly scrolled in lines is when the selection covers
very old lines and we're now wrapping around the scrollback history.
Then there's a fourth problem case: when the user has started a
selection, but hasn't yet moved the cursor. In this case, we have no
end point.
What's more problematic is that when the user (after scrolling) moves
the cursor, we try to create a huge selection that covers mostly
empty (NULL) rows, causing us to crash.
This can happen e.g. when reverse scrolling in such a way that we wrap
around the scrollback history.
The actual viewport in this case is something like `-n - m`. But the
selection we'll end up trying to create will be `m - (rows - n)`. This
range may very well contain NULL rows.
To deal with this, we simply cancel the selection.
For performance reasons, we track whether a cell is selected or not
using a bit in a cell's attributes.
This makes it easy for the renderer to determine if the cells should
be rendered as selected or not - it just have to look at the
'selected' bit instead of doing a complex range check against the
current selection.
This works nicely in most cases. But, if the cell is updated, the
'selected' bit is cleared. This results in the renderer rendering the
cell normally, i.e. _not_ selected.
Checking for this, and re-setting the 'selected' bit when the cell is
updated (printed to) is way too expensive as it is in the hot path.
Instead, sync the 'selected' bits just before rendering. This isn't so
bad as it may sound; if there is no selection this is a no-op. Even if
there is a selection, only those cells whose 'selected' bit have been
cleared are dirtied (and thus re-rendered) - these cells would have
been re-rendered anyway.
When the client is capturing the mouse, selection can only be done by
holding done shift.
This is why a lot of selection functions are no-ops if selection isn't
currently enabled.
However, there are many cases where we actually need to modify the
selection. In particular, selection_cancel().
Thus, only check for enabled selection when we're dealing with user
input.
Bonus: this also fixes a bug where an ongoing selection were finalized
as soon as the user released shift, even if he was still holding down
the mouse button.
Instead of storing combining data per cell, realize that most
combinations are re-occurring and that there's lots of available space
left in the unicode range, and store seen base+combining combinations
chains in a per-terminal array.
When we encounter a combining character, we first try to pre-compose,
like before. If that fails, we then search for the current
base+combining combo in the list of previously seen combinations. If
not found there either, we allocate a new combo and add it to the
list. Regardless, the result is an index into this array. We store
this index, offsetted by COMB_CHARS_LO=0x40000000ul in the cell.
When rendering, we need to check if the cell character is a plain
character, or if it's a composed character (identified by checking if
the cell character is >= COMB_CHARS_LO).
Then we render the grapheme pretty much like before.
We only used utf8proc to try to pre-compose a glyph from a base and
combining character.
We can do this ourselves by using a pre-compiled table of valid
pre-compositions. This table isn't _that_ big, and binary searching it
is fast.
That is, for a very small amount of code, and not too much extra RO
data, we can get rid of the utf8proc dependency.
This function extends an existing selection in the following way:
If the extension point is *before* the upper boundary of the current
selection, extend the selection upwards.
If the extension point is *after* the bottom boundary of the current
selection, extend the selection downwards.
If the extension point is *inside* the current selection, shrink the
selection such that the new size is maximized. This means we move the
*closest* start/end point from in the current selection.
To do text reflow, we only need to know if a line has been explicitly
linebreaked or not. If not, that means it wrapped, and that we
should *not* insert a linebreak when reflowing text.
When reflowing text, when reaching the end of a row in the old grid,
only insert a linebreak in the new grid if the old row had been
explicitly linebreaked.
Furthermore, when reflowing text and wrapping a row in the new grid,
mark the previous row as linebreaked if either the last cell was
(the last column in the last row) empty, or the current cell (the
first column in the new row) is empty. If both are non-empty, then we
assume a linewrap.
This fixes an issue where a "forced" selection (shift being pressed
while slave is tracking mouse events) would not finalize if the user
released shift *before* releasing the mouse button.
Previously when updating a selection, we would unmark *all* cells in
the old selection, and then mark all cells in the new selection.
This caused *all* cells to be dirtied and thus re-rendered.
Avoid this, by adding a temporary state to the cells' selected state.
Before unmarking the old selection, pre-mark the new selection using a
temporary state.
When unmarking the old selection, ignore cells in this temporary state.
When marking the new selection, ignore cells in this temporary
state (except clearing the temporary state).
When we extract text, we may insert '\n' at the end of each line (or
last column of selection, for block selections).
These newlines doesn't occupy any physical cells, and thus we
must **make** room for them in the extraction buffer.
When extracting text from the selection, we lost the first column on
all rows but the first.
This is because the algorithm changed slightly when we moved to
foreach_selection(); the end-of-line detection is now done on the
first column of the new line, instead of the last column on the
previous line.
Instead of having the renderer calculate, for each cell, whether that
cell is currently selected or not, make selection_update() mark/unmark
the selected cells.
The renderer now only has to look at the cells' 'selected'
attribute. This makes the renderer both smaller and faster.
Instead of first memmoving, possibly lots of data lots of times, the
received buffer, and _then_ calling the callback, simply call the
callback multiple times, and just skip the \r character(s).
When this returns true, it means we have keyboard focus and are
grabbing the mouse (for e.g. selections), regardless of whether the
client has enabled mouse tracking or not.
Up the requirements for enabling "forced" selection (that is, allowing
selections even though mouse tracking has been disabled).
* Require keyboard focus (if we don't have it, then the shift-key
isn't is for us)
* Don't just require shift being pressed, but that all other modifiers
are *not* pressed.