This is work in progress, and fairly untested.
This adds initial tracking of styled underlines. Setting attributes
seems to work (both color and underline style). Grid reflow has *not*
been tested.
When rendering, style is currently ignored (all styles are rendered as
a plain, legacy underline).
Color however, *is* applied.
This fixes an issue where entering unicode-mode in one foot client,
also enabled unicode-mode on other foot clients. Both
visually (although glitchy), and in effect.
The reason the state was originally in the seat objects, was to fully
support multi-seat. That is, one seat/keyboard entering unicode-mode
should not affect other seats/keyboards.
The issue with this is that seat objects are Wayland global. Thus, in
server mode, all seat objects are shared between the foot clients.
There is a similarity with IME, which also keeps state in the
seat. There's one big difference, however, and that is IME has Wayland
native enter/leave events, that the compositor emits when windows are
focused/unfocused. These events allow us to reset IME state. For our
own Unicode mode, there is nothing similar.
This patch moves the Unicode state from seats, to the terminal
struct. This does mean that if one seat/keyboard enters Unicode mode,
then *all* seats/keyboards will affect the unicode state. This
potential downside is outweighed by the fact that different foot
clients no longer affect each other.
Closes#1717
A compositor may unmap, and then remap the window, for example when
the window is minimized, or if the user switches workspace.
With DPI aware rendering, we *need* to know on which output we're
mapped, in order to use the correct DPI. This means the first frame we
render, before being mapped, always guesses the DPI.
In an unmap/map sequence, guessing the wrong DPI means the window will
flicker.
Fix by stashing the last used DPI value, and use that instead of
guessing.
This means the *only* time we _actually_ guess the DPI, is the very
first frame, when starting up foot.
If we're the ones initiating shutdown, start by sending SIGHUP. Only
if the client application does not terminate, send SIGTERM (and if it
still refuses to terminate, send SIGKILL).
Also reduce the timeout between the signals from 60s to 30s.
The raster attributes is, really, just a way to erase an area. And, if
the sixel is transparent, it's a nop.
The final text cursor position depends, not on our image size (which
is based on RA), but on the final graphical cursor position.
However, we do want to continue using it as a hint of the final image
size, to be able to pre-allocate the backing buffer.
So, here's what we do:
* When trimming trailing transparent rows, only trim the *image*, if
the graphical cursor is positioned on the last sixel row, *and* the
sixel is transparent.
* Opaque sixels aren't trimmed at all, since RA in this acts as an
erase that fills the RA region with the background color.
* The graphical cursor position is always adjusted (i.e. trimmed),
since it affects the text cursor position.
* The text cursor position is now calculated from the graphical cursor
position, instead of the image height.
Virtual machine monitor programs (e.g. QEMU, Cloud Hypervisor) expose
guest consoles as PTYs. With this patch, foot can access these guest
consoles.
Usually, the program used for accessing these PTYs is screen, but
screen is barely developed, doesn't support resizing, and has a bunch
of other unrelated stuff going on. It would be nice to have a
terminal emulator that properly supported opening an existing PTY.
The VMM controls the master end of the PTY, so to the other end (in
this case foot), it just behaves like any application running in a
directly-opened PTY, and all that's needed is to change foot's code to
support opening an existing PTY rather than creating one.
Co-authored-by: tanto <tanto@ccc.ac>
This function prints a single, non-double width, character to the
grid. It handles OSC-8 hyperlinks, but does not:
* update the cursor location
* erase sixels
* Store pointer to current pixel (i.e. pixel we're about to write to),
instead of a row-byte-offset. This way, we don't have to calculate the
offset into the backing image every time we emit a sixel band.
* Pass data pointer directly to sixel_add_*(), to avoid having to
calculate an offset into the backing image.
* Special case adding a single 1:1 sixel. This removes a for loop, and
simplifies state (position) updates. It is likely LTO does this for
us, but this way, we get it optimized in non-LTO builds as well.
This adds support for a new OSC escape sequence: OSC 176, that lets
terminal programs tell the terminal the name of the app that is
running. foot then sets the app ID of the toplevel to that ID,
which lets the compositor know which app is running, and typically
sets the appropriate icon, window grouping, ...
See: https://gist.github.com/delthas/d451e2cc1573bb2364839849c7117239
This boolean isn't needed. The idea was probably to not re-program the
timer unnecessarily, or even to prevent it from being moved forward in
time indefinitely.
However, the logic has (probably) gone through some changes, that now
makes it irrelevant.
The timer isn't moved forward indefinitely; it is always set to 8ms
from the last title update. The closer we get to that point in time,
the smaller the timeout we set.
Now, is_armed _did_ prevent the timer from being re-programmed. But
that tiny performance tweak isn't really necessary, as the title
should, in normal cases, not be set that often anyway.
When launching footclient with -E,--client-environment the environment
variables that should be set by foot, wasn't.
Those variables are:
* TERM
* COLORTERM
* PWD
* SHELL
and all variables defined by the user in the [environment] section in
foot.ini.
In the same way, we did not *unset* TERM_PROGRAM and
TERM_PROGRAM_VERSION.
This patch fixes it by "cloning" the custom environment, making it
mutable, and then adding/removing the variables above from it.
Instead of calling setenv()/unsetenv() directly, we add the wrapper
functions add_to_env() and del_from_env().
When *not* using a custom environment, they simply call
setenv()/unsetenv().
When we *are* using a custom environment, add_to_env() first loops all
existing variables, looking for a match. If a match is found, it's
updated with the new value. If it's not found, a new entry is added.
del_from_env() loops all entries, and removes it when a match is
found. If no match is found, nothing is done.
The mutable environment is allocated on the heap, but never free:d. We
don't need to free it, since it's only allocated after forking, in the
child process.
Closes#1568
This implements private mode 2027 - grapheme cluster processing, as
defined in the "Terminal Unicode Core"[1] specification.
Internally, we just flip the already existing option "grapheme
shaping". Since it's now runtime changeable, we need a copy of it in
the terminal struct, rather than referencing the conf object.
[1]: 13fc5a8993/spec/terminal-unicode-core.tex (L50-L53)
This patch changes the default of triple clicking, from selecting the
current logical row, to first trying to select the contents of the
quote under the cursor, and if failing to find a quote, selecting the
current row (like before).
This is implemented by adding a new key binding, 'select-quote'.
It will search for surrounding quote characters, and if one is found
on each side of the cursor, the quote is selected. If not, the entire
row is selected instead.
Subsequent selection operations will behave as if the selection is
either a word selection (a quote was found), or a row selection (no
quote found).
Escaped quote characters are not supported: "foo \" bar" will match
'foo \', and not 'foo " bar'.
Mismatched quotes are not custom handled. They will simply not match.
Nested quotes ("123 'abc def' 456") are supported.
Closes#1364
The foot window may, for various reasons, become completely
unmapped (that is, being removed from all outputs) at run time.
One example is wlroots based compositors; they unmap all other windows
when an opaque window is fullscreened.
21d99f8dce introduced a regression,
where instead of picking the scaling factor from one of the available
outputs (at random), we started falling back to '1' as soon as we were
unmapped.
This patch restores the original logic, but also improves upon it.
As soon as a scaling factor has been assigned to the window, we store
a copy of it in the term struct ('scale_before_unmap').
When unmapped, we check if it has a valid value (the only time it
doesn't is before the initial map). If so, we use it.
Only if it hasn't been set do we fall back to picking an output at
random, and using its scaling factor.
Closes#1464
* In all calls to wl_subsurface_set_position()
* (wp_viewport_set_destination() already does this)
* Whenever we use the scale to calculate margins (search box,
scrollback indicator etc)
* Since the scaling factor is stored as a float (and not a double),
use roundf() instead of round()
Break out the logic that updates the terminal’s scaling factor value,
from render_resize(), to a new function, term_update_scale(). This
allows us to update the scaling factor without a full grid resize.
We also change how we pick the scaling factor (when fractional scaling
is not in use). Before, we’d use the highest scaling factor from all
monitors we were mapped on. Now, we use the scaling factor from the
monitor we were *last* mapped on.
Then, add a boolean parameter to term_set_fonts(), and when
false, *don’t* call render_resize_force().
Also change term_font_dpi_changed() to only return true if the font
was changed in any way.
Finally, rewrite update_term_for_output_change() to:
* Call term_update_scale() before doing anything else
* Call render_resize{,_force} *last*, and *only* if either the scale
or the fonts were updated.
This fixes several things:
* A bug where we failed to update the fonts when fractional scaling
was in use, and we guessed the initial scale/DPI wrong. The bug
happened because updated the internal "preferred" scale value, and a
later call to render_resize() updated the terminal’s scale value,
but since that code path didn’t call term_font_dpi_changed() (and it
shouldn’t), the fonts weren’t resized properly.
* It ensures we only resize the grid *once* when the scaling factor,
or DPI is changed. Before this, we’d resize it twice. And this
happened when e.g. dragging the window between monitors.
Before this patch, when the cell dimensions changed (i.e. when the
font size changes), sixel images were either removed (the new cell
dimensions are smaller than the old), or simply kept at their original
size (new cell dimensions are larger).
With this patch, sixels are instead resized. This means a
sixel *always* occupies the same number of rows and columns,
regardless of how much the font size is changed.
This is done by maintaining two sets of image data and pixman images,
as well as their dimensions. These two sets are the new ‘original’ and
‘scaled’ members of the sixel struct.
The "top-level" pixman image pointer, and the ‘width’ and ‘height’
members either point to the "original", or the "scaled" version.
They are invalidated as soon as the cell dimensions change. They, and
the ‘scaled’ image is updated on-demand (when we need to render a
sixel).
Note that the ‘scaled’ image is always NULL when the current cell
dimensions matches the ones used when emitting the sixel (to save
run-time memory).
Closes#1383
Images with an aspect ratio of 1:1 are by far the most common (though
not the default).
It makes a lot of sense, performance wise, to special case
them.
Specifically, the sixel_add() function benefits greatly from this, as
it is the inner most, most heavily executed function when parsing a
sixel image.
sixel_add_many() also benefits, since allows us to drop a
multiplication. Since sixel_add_many() always called first (no other
call sites call sixel_add() directly), this has a noticeable effect on
performance.
Another thing that helps (though not as much), and not specifically
with AR 1:1 images, is special casing DECGRI a bit.
Up until now, it simply updated the current sixel parameter value. The
problem is that the default parameter value is 0. But, a value of 0
should be treated as 1. By adding a special ‘repeat_count’ variable to
the sixel struct, we can initialize it to ‘1’ when we see DECGRI, and
then simply overwrite it as the parameter value gets updated. This
allows us to drop an if..else when emitting the sixel.
That is, parse P1 when initializing a new sixel, and don’t ignore
pad/pad in the raster attributes command.
The default aspect ratio is 2:1, but most sixels will override it in
the raster attributes command (to 1:1).
Set cursor column, absolute.
term_cursor_to() needs to reload the current row pointer, and is thus
not very effective when we only need to modify the column.
We’re already switching on the next VT input byte in the state
machine; no need to if...else if in action_param() too.
That is, split up action_param() into three:
* action_param_new()
* action_param_new_subparam()
* action_param()
This makes the code cleaner, and hopefully slightly faster.
Next, to improve performance further, only check for (sub)parameter
overflow in action_param_new() and action_param_subparam().
Add pointers to the VT struct that points to the currently active
parameter and sub-parameter.
When the number of parameters (or sub-parameters) overflow, warn, and
then point the parameter pointer to a "dummy" value in the VT struct.
This way, we don’t have to check anything in action_param().
When accumulating scroll damage, we check if the last scroll damage’s
scrolling region, and type, matches the new/current scroll damage. If
so, the number of lines in the last scroll damage is increased,
instead of adding a new scroll damage instance to the list.
If the scroll damage list isn’t consumed, this build up of scroll
damage would eventually overflow.
And, even if it didn’t overflow, it could become large enough, that
when later used to calculate e.g. the affected surface area, while
rendering a frame, would cause an overflow there instead.
This patch fixes both issues by:
a) do an overflow check before increasing the line count
b) limit the line count to UINT16_MAX
The selection coordinates are in absolute row numbers. As such,
selection breaks when interactively resizing the normal grid, since we
then instantiate a temporary grid mapping directly to the current
viewport (for performance reason, to avoid reflowing the entire grid
over and over again).
Fix by stashing the actual selection coordinates, and ajusting the
"active" ones to the temporary grid.
Re-initialize the temporary ‘normal’ grid instance each time we
receive a configure event while doing an interactive resize.
This way, window content will not be "erased" when the window is first
made smaller, then larger again.
And, if the viewport is up in the scrollback history, increasing the
window size will reveal more of the scrollback, instead of just being
black.
The last issue is the cursor; it’s currently not "stuck" where it
should be. Instead, it follows the window around. This is due to two
things:
1) the temporary grid we create is large enough to contain the current
viewport, but not more than that. That means we can’t "scroll up", to
hide the cursor.
2) grid_resize_without_reflow() doesn’t know anything about
"interactive resizing". As such, it will ensure the cursor is bound
to the new grid dimensions.
I don’t yet have a solution for this. This patch implements a
workaround to at least reduce the impact, by simply hiding the cursor
while we’re doing an interactive resize.
But also, more importantly, logical fixes:
* Stash the number of new scrollback lines the stashed ‘normal’ grid
should be resized *to*.
There’s also a couple of performance changes here:
* When doing a delayed reflow (tiocswinsz timer), call
sixel_reflow_grid(term, &term->normal) - there’s no need to reflow
sixels in the ‘alt’ screen.
* When doing a delayed reflow, free all scroll damage. It’s not
needed, since we’re damaging the entire window anyway.
* Use minimum size for the temporary ‘normal’ grid (that contains the
current viewport). We just need it to be large enough to fit the
current viewport, and be a valid grid row count (power of 2). This
just so happens to be the current ‘alt’ grid’s row count...
Reflowing a large scrollback is *slow*. During an interactive resize,
it can easily take long enough that the compositor fills the Wayland
socket with configure events. Eventually, the socket becomes full and
the compositor terminates the connection, causing foot to exit.
This patch is work-in-progress, and the first step towards alleviating
this.
It delays the reflow by:
* Snapshotting (copying) the original grid when an interactive resize
is started.
* While resizing, we apply a simple truncation resize of the
grid (like we handle the alt screen).
* When the resize is done, or paused for ‘resize-delay-ms’, the grid
is reflowed.
TODO: we *must* not allow any changes to the temporary (truncated)
grid during the resize. Any changes to the grid would be lost when the
final reflow is applied. That is, we must completely pause the ptmx
pipe while a resize is in progress.
Future improvements:
The initial copy can be slow. We should be able to avoid it by
rewriting the reflow algorithm to not free anything. This is
complicated by the fact that some resources (e.g. sixel images) are
currently *moved* to the new grid. They’d instead have to be copied.
This patch adds support for the OSC-133;A sequence, introduced by
FinalTerm and implemented by iTerm2, Kitty and more. See
https://iterm2.com/documentation-one-page.html#documentation-escape-codes.html.
The shell emits the OSC just before printing the prompt. This lets the
terminal know where, in the scrollback, there are prompts.
We implement this using a simple boolean in the row struct ("this row
has a prompt"). The prompt marker must be reflowed along with the text
on window resizes.
In an ideal world, erasing, or overwriting the cell where the OSC was
emitted, would remove the prompt mark. Since we don't store this
information in the cell struct, we can't do that. The best we can do
is reset it in erase_line(). This works well enough in the "normal"
screen, when used with a "normal" shell. It doesn't really work in
fullscreen apps, on the alt screen. But that doesn't matter since we
don't support jumping between prompts on the alt screen anyway.
To be able to jump between prompts, two new key bindings have been
added: prompt-prev and prompt-next, bound to ctrl+shift+z and
ctrl+shift+x respectively.
prompt-prev will jump to the previous, not currently visible, prompt,
by moving the viewport, ensuring the prompt is at the top of the
screen.
prompt-next jumps to the next prompt, visible or not. Again, by moving
the viewport to ensure the prompt is at the top of the screen. If
we're at the bottom of the scrollback, the viewport is instead moved
as far down as possible.
Closes#30
The match logic uses the last start coordinate to determine which end
points in the selection to update. This sometimes fails when the start
coordinate has been changed by e.g. a key binding - the new start
coordinate is incorrectly matched against the old-but-modified start
coordinate, causing foot to e.g. *not* upate the selection start
coordinate.
Example:
$ echo 'test\n\test\ntest'
Then do a scrollback search for 'test. The first match is found
correctly (the last 'test'), but searching for the previous match
(ctrl+r) does not select the middle 'test'.
Fix by passing the search direction to search_find_next(), and have
_it_ calculate the coordinate to start search. There are three possibilities:
* forward
* backward
* "backward", but at the same position
The first two are used when searching for next/prev match with ctrl+s
and ctrl+r. The last one is used when the search criteria is
updated. In this case, we don't want to move to the previous match,
*unless* the current match no longer matches.
The global config doesn’t necessarily reflect the correct
configuration to use - we should *always* use the current terminal
instance’s conf pointer.
* Move selection override modifier mask to the key_binding_set struct
* Always warn if XDG activation is unavailable, not just if
bell.urgent is set (we no longer have access to this information)
* Pass ‘bool presentation_timings’ as a parameter to wayl_init()
* Remove ‘presentation_timings’ member from the ‘terminal’ struct
Closes#932
Up until now, our Wayland seats have been tracking key bindings. This
makes sense, since the seat’s keymap determines how the key bindings
are resolved.
However, tying bindings to the seat/keymap alone isn’t enough, since
we also depend on the current configuration (i.e. user settings) when
resolving a key binding.
This means configurations that doesn’t match the wayland object’s
configuration, currently don’t resolve key bindings correctly. This
applies to footclients where the user has overridden key bindings on
the command line (e.g. --override key-bindings.foo=bar).
Thus, to correctly resolve key bindings, each set of key bindings must
be tied *both* to a seat/keymap, *and* a configuration.
This patch introduces a key-binding manager, with an API to
add/remove/lookup, and load/unload keymaps from sets of key bindings.
In the API, sets are tied to a seat and terminal instance, since this
makes the most sense (we need to instantiate, or incref a set whenever
a new terminal instance is created). Internally, the set is tied to a
seat and the terminal’s configuration.
Sets are *added* when a new seat is added, and when a new terminal
instance is created. Since there can only be one instance of each
seat, sets are always removed when a seat is removed.
Terminals on the other hand can re-use the same configuration (and
typically do). Thus, sets ref-count the configuration. In other words,
when instantiating a new terminal, we may not have to instantiate a
new set of key bindings, but can often be incref:ed instead.
Whenever the keymap changes on a seat, all key bindings sets
associated with that seat reloads (re-resolves) their key bindings.
Closes#931