foot/url-mode.h

28 lines
827 B
C
Raw Normal View History

#pragma once
#include <stdbool.h>
#include <xkbcommon/xkbcommon.h>
#include <tllist.h>
#include "config.h"
key-binding: new API, for handling sets of key bindings Up until now, our Wayland seats have been tracking key bindings. This makes sense, since the seat’s keymap determines how the key bindings are resolved. However, tying bindings to the seat/keymap alone isn’t enough, since we also depend on the current configuration (i.e. user settings) when resolving a key binding. This means configurations that doesn’t match the wayland object’s configuration, currently don’t resolve key bindings correctly. This applies to footclients where the user has overridden key bindings on the command line (e.g. --override key-bindings.foo=bar). Thus, to correctly resolve key bindings, each set of key bindings must be tied *both* to a seat/keymap, *and* a configuration. This patch introduces a key-binding manager, with an API to add/remove/lookup, and load/unload keymaps from sets of key bindings. In the API, sets are tied to a seat and terminal instance, since this makes the most sense (we need to instantiate, or incref a set whenever a new terminal instance is created). Internally, the set is tied to a seat and the terminal’s configuration. Sets are *added* when a new seat is added, and when a new terminal instance is created. Since there can only be one instance of each seat, sets are always removed when a seat is removed. Terminals on the other hand can re-use the same configuration (and typically do). Thus, sets ref-count the configuration. In other words, when instantiating a new terminal, we may not have to instantiate a new set of key bindings, but can often be incref:ed instead. Whenever the keymap changes on a seat, all key bindings sets associated with that seat reloads (re-resolves) their key bindings. Closes #931
2022-04-17 15:39:51 +02:00
#include "key-binding.h"
#include "terminal.h"
static inline bool urls_mode_is_active(const struct terminal *term)
{
return tll_length(term->urls) > 0;
}
void urls_collect(
const struct terminal *term, enum url_action action, url_list_t *urls);
void urls_assign_key_combos(const struct config *conf, url_list_t *urls);
void urls_render(struct terminal *term);
void urls_reset(struct terminal *term);
key-binding: new API, for handling sets of key bindings Up until now, our Wayland seats have been tracking key bindings. This makes sense, since the seat’s keymap determines how the key bindings are resolved. However, tying bindings to the seat/keymap alone isn’t enough, since we also depend on the current configuration (i.e. user settings) when resolving a key binding. This means configurations that doesn’t match the wayland object’s configuration, currently don’t resolve key bindings correctly. This applies to footclients where the user has overridden key bindings on the command line (e.g. --override key-bindings.foo=bar). Thus, to correctly resolve key bindings, each set of key bindings must be tied *both* to a seat/keymap, *and* a configuration. This patch introduces a key-binding manager, with an API to add/remove/lookup, and load/unload keymaps from sets of key bindings. In the API, sets are tied to a seat and terminal instance, since this makes the most sense (we need to instantiate, or incref a set whenever a new terminal instance is created). Internally, the set is tied to a seat and the terminal’s configuration. Sets are *added* when a new seat is added, and when a new terminal instance is created. Since there can only be one instance of each seat, sets are always removed when a seat is removed. Terminals on the other hand can re-use the same configuration (and typically do). Thus, sets ref-count the configuration. In other words, when instantiating a new terminal, we may not have to instantiate a new set of key bindings, but can often be incref:ed instead. Whenever the keymap changes on a seat, all key bindings sets associated with that seat reloads (re-resolves) their key bindings. Closes #931
2022-04-17 15:39:51 +02:00
void urls_input(struct seat *seat, struct terminal *term,
const struct key_binding_set *bindings, uint32_t key,
input: rewrite of how we match foot’s own key bindings Bindings are matched in one out of three ways: * By translated (by XKB) symbols * By untranslated symbols * By raw key codes A translated symbol is affected by pressed modifiers, some of which can be “consumed”. Consumed modifiers to not partake in the comparison with the binding’s modifiers. In this mode, ctrl+shift+2 maps to ctrl+@ on a US layout. Untranslated symbols, or un-shifted symbols refer to the “base” symbol of the pressed key, i.e. it’s unaffected by modifiers. In this mode, consumed modifiers *do* partake in the comparison with the binding’s modifiers, and ctrl+shift+2 maps to ctrl+shift+2 on a US layout. More examples: ctrl+shift+u maps to ctrl+U in the translated lookup, while ctrl+shift+u maps to ctrl+shift+u in the untranslated lookup. Finally, we also match raw key codes. This allows our bindings to work using the same physical keys when the user switches between latin and non-latin layouts. This means key bindings in foot.ini *must* not include both +shift+ and a *shifted* key. I.e. ctrl+shift+U is not a valid combo as it cannot be triggered. Unfortunately, this was how you were supposed to write bindings up until now... so, we try to detect such bindings, log a deprecation warning and then “fix” the binding for the user. When specifying bindings in foot.ini, both ctrl+U and ctrl+shift+u are valid, and will work. The latter is preferred though, since we cannot detect the raw key code for the former variant. Personally, I also prefer the latter one because it is more explicit; it’s more obvious which keys are involved. However, in some cases it makes more sense to use the other variant. Typically for non-letter combos.
2021-02-27 20:42:31 +01:00
xkb_keysym_t sym, xkb_mod_mask_t mods, xkb_mod_mask_t consumed,
const xkb_keysym_t *raw_syms, size_t raw_count,
uint32_t serial);