Initial version..

This commit is contained in:
Jaroslav Kysela 1999-12-01 19:31:47 +00:00
parent f5e461caa3
commit 85762c0472

929
src/pcm/plugin/adpcm.c Normal file
View file

@ -0,0 +1,929 @@
/*
* Ima-ADPCM conversion Plug-In Interface
* Copyright (c) 1999 by Jaroslav Kysela <perex@suse.cz>
* Uros Bizjak <uros@kss-loka.si>
*
* Based on reference implementation by Sun Microsystems, Inc.
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Library General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <endian.h>
#include <byteswap.h>
#include "../pcm_local.h"
static short qtab_721[7] = { -124, 80, 178, 246, 300, 349, 400 };
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static short _dqlntab[16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048
};
/* Maps G.721 code word to log of scale factor multiplier. */
static short _witab[16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12
};
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static short _fitab[16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0
};
static short power2[15] = { 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
};
/*
* The following is the definition of the state structure
* used by the G.721/G.723 encoder and decoder to preserve their internal
* state between successive calls. The meanings of the majority
* of the state structure fields are explained in detail in the
* CCITT Recommendation G.721. The field names are essentially indentical
* to variable names in the bit level description of the coding algorithm
* included in this Recommendation.
*/
typedef struct g72x_state {
long yl; /* Locked or steady state step size multiplier. */
short yu; /* Unlocked or non-steady state step size multiplier. */
short dms; /* Short term energy estimate. */
short dml; /* Long term energy estimate. */
short ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
short a[2]; /* Coefficients of pole portion of prediction filter. */
short b[6]; /* Coefficients of zero portion of prediction filter. */
short pk[2]; /*
* Signs of previous two samples of a partially
* reconstructed signal.
*/
short dq[6]; /*
* Previous 6 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
short sr[2]; /*
* Previous 2 samples of the quantized difference
* signal represented in an internal floating point
* format.
*/
char td; /* delayed tone detect, new in 1988 version */
} g72x_state_t;
/*
* quan()
*
* quantizes the input val against the table of size short integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static inline int quan( int val, short *table, int size)
{
int i;
for (i = 0; i < size; i++)
if (val < *table++)
break;
return (i);
}
/*
* fmult()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantissa) "srn".
*/
static inline int fmult( int an, int srn)
{
short anmag, anexp, anmant;
short wanexp, wanmant;
short retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
static inline int predictor_zero(g72x_state_t *state_ptr)
{
int i;
int sezi;
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
for (i = 1; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return (sezi);
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
static inline int predictor_pole(g72x_state_t *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
}
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
static inline int step_size(g72x_state_t *state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
static inline
int quantize( int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size)
{ /* table size of short integers */
short dqm; /* Magnitude of 'd' */
short exp; /* Integer part of base 2 log of 'd' */
short mant; /* Fractional part of base 2 log */
short dl; /* Log of magnitude of 'd' */
short dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
exp = quan(dqm >> 1, power2, 15);
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) + mant;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'dqln' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
static inline
int reconstruct( int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y)
{ /* Step size multiplier */
short dql; /* Log of 'dq' magnitude */
short dex; /* Integer part of log */
short dqt;
short dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
return ((sign) ? -0x8000 : 0);
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
dq = (dqt << 7) >> (14 - dex);
return ((sign) ? (dq - 0x8000) : dq);
}
}
/*
* update()
*
* updates the state variables for each output code
*/
static
void update( int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
g72x_state_t *state_ptr)
{ /* coder state pointer */
int cnt;
short mag, exp; /* Adaptive predictor, FLOAT A */
short a2p = 0; /* LIMC */
short a1ul; /* UPA1 */
short pks1; /* UPA2 */
short fa1;
char tr; /* tone/transition detector */
short ylint, thr2, dqthr;
short ylfrac, thr1;
short pk0;
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
mag = dq & 0x7FFF; /* prediction difference magnitude */
/* TRANS */
ylint = state_ptr->yl >> 15; /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5);
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
if (dqsez != 0) {
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100;
else if (fa1 > 8191)
a2p += 0xFF;
else
a2p += fa1 >> 5;
if (pk0 ^ state_ptr->pk[1])
/* LIMC */
if (a2p <= -12160)
a2p = -12288;
else if (a2p >= 12416)
a2p = 12288;
else
a2p -= 0x80;
else if (a2p <= -12416)
a2p = -12288;
else if (a2p >= 12160)
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if (dqsez != 0) {
if (pks1 == 0)
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if (state_ptr->a[0] < -a1ul)
state_ptr->a[0] = -a1ul;
else if (state_ptr->a[0] > a1ul)
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
for (cnt = 0; cnt < 6; cnt++) {
state_ptr->b[cnt] -=
state_ptr->b[cnt] >> 8;
if (dq & 0x7FFF) { /* XOR */
if ((dq ^ state_ptr->dq[cnt]) >= 0)
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
for (cnt = 5; cnt > 0; cnt--)
state_ptr->dq[cnt] = state_ptr->dq[cnt - 1];
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0) {
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
} else {
exp = quan(mag, power2, 15);
state_ptr->dq[0] = (dq >= 0) ?
(exp << 6) + ((mag << 6) >> exp) :
(exp << 6) + ((mag << 6) >> exp) - 0x400;
}
state_ptr->sr[1] = state_ptr->sr[0];
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0) {
state_ptr->sr[0] = 0x20;
} else if (sr > 0) {
exp = quan(sr, power2, 15);
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
} else if (sr > -32768) {
mag = -sr;
exp = quan(mag, power2, 15);
state_ptr->sr[0] =
(exp << 6) + ((mag << 6) >> exp) - 0x400;
} else
state_ptr->sr[0] = 0xFC20;
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
if (tr == 1)
state_ptr->ap = 256;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
(state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else
state_ptr->ap += (-state_ptr->ap) >> 4;
}
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g72x_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
static inline void g72x_init_state(g72x_state_t *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
for (cnta = 0; cnta < 6; cnta++) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
}
/*
* g721_encoder()
*
* Encodes the input vale of linear PCM and returns the resulting code.
*/
static inline int g721_encoder( int sl, g72x_state_t *state_ptr)
{
short sezi, se, sez; /* ACCUM */
short d; /* SUBTA */
short sr; /* ADDB */
short y; /* MIX */
short dqsez; /* ADDC */
short dq, i;
sl >>= 2; /* 14-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
i = quantize(d, y, qtab_721, 7); /* i = ADPCM code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr + sez - se; /* pole prediction diff. */
update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* g721_decoder()
*
* Description:
*
* Decodes a 4-bit code of G.721 encoded data of i and
* returns the resulting linear PCM
*/
static inline int g721_decoder( int i, g72x_state_t *state_ptr)
{
short sezi, sei, sez, se; /* ACCUM */
short y; /* MIX */
short sr; /* ADDB */
short dq;
short dqsez;
i &= 0x0f; /* mask to get proper bits */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
sei = sezi + predictor_pole(state_ptr);
se = sei >> 1; /* se = estimated signal */
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (sr << 2); /* sr was 14-bit dynamic range */
}
/*
* Basic Ima-ADPCM plugin
*/
typedef enum {
_S8_ADPCM,
_U8_ADPCM,
_S16LE_ADPCM,
_U16LE_ADPCM,
_S16BE_ADPCM,
_U16BE_ADPCM,
_ADPCM_S8,
_ADPCM_U8,
_ADPCM_S16LE,
_ADPCM_U16LE,
_ADPCM_S16BE,
_ADPCM_U16BE
} combination_t;
struct adpcm_private_data {
combination_t cmd;
g72x_state_t state;
};
static void adpcm_conv_u8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
unsigned int pcm;
while (size-- > 0) {
pcm = ((*src_ptr++) ^ 0x80) << 8;
*dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
}
}
static void adpcm_conv_s8bit_adpcm(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
unsigned int pcm;
while (size-- > 0) {
pcm = *src_ptr++ << 8;
*dst_ptr++ = g721_encoder((signed short)(pcm), state_ptr);
}
}
static void adpcm_conv_s16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_encoder((signed short)(*src_ptr++), state_ptr);
}
static void adpcm_conv_s16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_encoder((signed short)(bswap_16(*src_ptr++)), state_ptr);
}
static void adpcm_conv_u16bit_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_encoder((signed short)((*src_ptr++) ^ 0x8000), state_ptr);
}
static void adpcm_conv_u16bit_swap_adpcm(g72x_state_t *state_ptr, unsigned short *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_encoder((signed short)(bswap_16((*src_ptr++) ^ 0x8000)), state_ptr);
}
static void adpcm_conv_adpcm_u8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_decoder((*src_ptr++) >> 8, state_ptr) ^ 0x80;
}
static void adpcm_conv_adpcm_s8bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned char *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) >> 8;
}
static void adpcm_conv_adpcm_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_decoder(*src_ptr++, state_ptr);
}
static void adpcm_conv_adpcm_swap_s16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr));
}
static void adpcm_conv_adpcm_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = g721_decoder(*src_ptr++, state_ptr) ^ 0x8000;
}
static void adpcm_conv_adpcm_swap_u16bit(g72x_state_t *state_ptr, unsigned char *src_ptr,
unsigned short *dst_ptr, size_t size)
{
while (size-- > 0)
*dst_ptr++ = bswap_16(g721_decoder(*src_ptr++, state_ptr) ^ 0x8000);
}
static ssize_t adpcm_transfer(snd_pcm_plugin_t *plugin,
char *src_ptr, size_t src_size,
char *dst_ptr, size_t dst_size)
{
struct adpcm_private_data *data;
if (plugin == NULL || src_ptr == NULL || src_size < 0 ||
dst_ptr == NULL || dst_size < 0)
return -EINVAL;
if (src_size == 0)
return 0;
data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
if (data == NULL)
return -EINVAL;
switch (data->cmd) {
case _U8_ADPCM:
if (dst_size < src_size)
return -EINVAL;
adpcm_conv_u8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
return src_size;
case _S8_ADPCM:
if (dst_size < src_size)
return -EINVAL;
adpcm_conv_s8bit_adpcm(&data->state, src_ptr, dst_ptr, src_size);
return src_size;
case _S16LE_ADPCM:
if ((dst_size << 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
return src_size >> 1;
case _U16LE_ADPCM:
if ((dst_size << 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
return src_size >> 1;
case _S16BE_ADPCM:
if ((dst_size << 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_s16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_s16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
return src_size >> 1;
case _U16BE_ADPCM:
if ((dst_size << 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_u16bit_swap_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_u16bit_adpcm(&data->state, (short *)src_ptr, dst_ptr, src_size >> 1);
#else
#error "Have to be coded..."
#endif
return src_size >> 1;
case _ADPCM_U8:
if (dst_size < src_size)
return -EINVAL;
adpcm_conv_adpcm_u8bit(&data->state, src_ptr, dst_ptr, src_size);
return src_size;
case _ADPCM_S8:
if (dst_size < src_size)
return -EINVAL;
adpcm_conv_adpcm_s8bit(&data->state, src_ptr, dst_ptr, src_size);
return src_size;
case _ADPCM_S16LE:
if ((dst_size >> 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#else
#error "Have to be coded..."
#endif
return src_size << 1;
case _ADPCM_U16LE:
if ((dst_size >> 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#else
#error "Have to be coded..."
#endif
return src_size << 1;
case _ADPCM_S16BE:
if ((dst_size >> 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_adpcm_swap_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_adpcm_s16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#else
#error "Have to be coded..."
#endif
return src_size << 1;
case _ADPCM_U16BE:
if ((dst_size >> 1) < src_size)
return -EINVAL;
#if __BYTE_ORDER == __LITTLE_ENDIAN
adpcm_conv_adpcm_swap_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#elif __BYTE_ORDER == __BIG_ENDIAN
adpcm_conv_adpcm_u16bit(&data->state, src_ptr, (short *)dst_ptr, src_size);
#else
#error "Have to be coded..."
#endif
return dst_size << 1;
default:
return -EIO;
}
}
static int adpcm_action(snd_pcm_plugin_t *plugin, snd_pcm_plugin_action_t action)
{
struct adpcm_private_data *data;
if (plugin == NULL)
return -EINVAL;
data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
if (action == PREPARE)
g72x_init_state(&data->state);
return 0; /* silenty ignore other actions */
}
static ssize_t adpcm_src_size(snd_pcm_plugin_t *plugin, size_t size)
{
struct adpcm_private_data *data;
if (!plugin || size <= 0)
return -EINVAL;
data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
switch (data->cmd) {
case _U8_ADPCM:
case _S8_ADPCM:
case _ADPCM_U8:
case _ADPCM_S8:
return size;
case _U16LE_ADPCM:
case _S16LE_ADPCM:
case _U16BE_ADPCM:
case _S16BE_ADPCM:
return size * 2;
case _ADPCM_U16LE:
case _ADPCM_S16LE:
case _ADPCM_U16BE:
case _ADPCM_S16BE:
return size / 2;
default:
return -EIO;
}
}
static ssize_t adpcm_dst_size(snd_pcm_plugin_t *plugin, size_t size)
{
struct adpcm_private_data *data;
if (!plugin || size <= 0)
return -EINVAL;
data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
switch (data->cmd) {
case _U8_ADPCM:
case _S8_ADPCM:
case _ADPCM_U8:
case _ADPCM_S8:
return size;
case _U16LE_ADPCM:
case _S16LE_ADPCM:
case _U16BE_ADPCM:
case _S16BE_ADPCM:
return size / 2;
case _ADPCM_U16LE:
case _ADPCM_S16LE:
case _ADPCM_U16BE:
case _ADPCM_S16BE:
return size * 2;
default:
return -EIO;
}
}
int snd_pcm_plugin_build_adpcm(int src_format, int dst_format, snd_pcm_plugin_t **r_plugin)
{
struct adpcm_private_data *data;
snd_pcm_plugin_t *plugin;
combination_t cmd;
if (!r_plugin)
return -EINVAL;
*r_plugin = NULL;
if (dst_format == SND_PCM_SFMT_IMA_ADPCM) {
switch (src_format) {
case SND_PCM_SFMT_U8: cmd = _U8_ADPCM; break;
case SND_PCM_SFMT_S8: cmd = _S8_ADPCM; break;
case SND_PCM_SFMT_U16_LE: cmd = _U16LE_ADPCM; break;
case SND_PCM_SFMT_S16_LE: cmd = _S16LE_ADPCM; break;
case SND_PCM_SFMT_U16_BE: cmd = _U16BE_ADPCM; break;
case SND_PCM_SFMT_S16_BE: cmd = _S16BE_ADPCM; break;
default:
return -EINVAL;
}
} else if (src_format == SND_PCM_SFMT_IMA_ADPCM) {
switch (dst_format) {
case SND_PCM_SFMT_U8: cmd = _ADPCM_U8; break;
case SND_PCM_SFMT_S8: cmd = _ADPCM_S8; break;
case SND_PCM_SFMT_U16_LE: cmd = _ADPCM_U16LE; break;
case SND_PCM_SFMT_S16_LE: cmd = _ADPCM_S16LE; break;
case SND_PCM_SFMT_U16_BE: cmd = _ADPCM_U16BE; break;
case SND_PCM_SFMT_S16_BE: cmd = _ADPCM_S16BE; break;
default:
return -EINVAL;
}
} else {
return -EINVAL;
}
plugin = snd_pcm_plugin_build("Ima-ADPCM<->linear conversion",
sizeof(struct adpcm_private_data));
if (plugin == NULL)
return -ENOMEM;
data = (struct adpcm_private_data *)snd_pcm_plugin_extra_data(plugin);
data->cmd = cmd;
plugin->transfer = adpcm_transfer;
plugin->src_size = adpcm_src_size;
plugin->dst_size = adpcm_dst_size;
plugin->action = adpcm_action;
*r_plugin = plugin;
return 0;
}